Fachschafft Pharmazie an der Ruprecht-Karls-Universität
in Kooperation mit der Fakultät für Pharmazie

Markus Bläß
Steffen Schweizer

Konzept einer
studentischen Betreuung
im Grundstudium

an der Fakultät für Pharmazie der
Ruprecht-Karls-Universität Heidelberg

Allgemeine und Fachliche Erstsemester-Einführung
in Verbindung mit semesterbegleitenden Fachtutorien
im Grundstudium der Pharmazie

Heidelberg 1996

Schriftenreihe
Beratung und Kompetenzentwicklung an der Hochschule 4

PLANUNG UND KONZEPTION

Anja Krüger
Angelika Ruck
Anja Toporski
Tanja Zick
Thilo Bertsche
Markus Blaß
Steffen Schweizer
Bernd Sorg
Uwe Weidenauer

Fachschaft Pharmazie an der Ruprecht-Karls-Universität
Im Neuenheimer Feld 364
69120 Heidelberg
Telefon: 06221 - 544856
e-mail: ap0@ix.urz.uni-heidelberg.de

SCHRIFTENREIHE
BERATUNG UND KOMPETENZENTWICKLUNG AN DER HOCHSCHULE

HERAUSGEBER: DIETMAR CHUR

PROJEKT KOOPERATIVE BERATUNG
SEMINARSTRAßE 2 • 69117 HEIDELBERG
TELEFON: 06221 - 542453 • FAX: 542618

DRUCK: UNIVERSITÄTSDRUCKEREI HEIDELBERG

1. AUFLAGE
JULI 1996

ISSN 0948-0854
Dieser Bericht über ein studentisches Projekt an der Fakultät für Pharmazie der Universität Heidelberg gibt einen Einblick in die Studienreform vor Ort. Er zeigt, wieviel Verantwortungsbewußtsein, Kompetenz und Einsatzbereitschaft für die Verbesserung des Studiums bei Studierenden vorhanden ist und wie studentische Initiativen durch gezielte Förderung Reformprozesse an der Universität voranbringen können. Das Projekt, das von engagierten Studierenden ausging und von ihnen über mehrere Jahre kontinuierlicher Arbeit weiterentwickelt wurde, hat zu einem Ergebnis geführt, das Modellcharakter auch über die Universität Heidelberg hinaus beanspruchen kann.

Aus der Sicht des Projekts Kooperative Beratung, das diese Schriftenreihe herausgibt, ist die Initiative der Pharmazie-Studierenden vor allem deshalb bemerkenswert, weil ihr eine ganzheitliche Sicht des Studiums zugrunde liegt. Es geht hier nicht nur um fachliche, nur um persönliche oder nur um soziale Aspekte jeweils für sich, sondern um eine Orientierung für ein aktives Studium, welche die Studierenden als Personen in ihren sozialen Beziehungen und mit jeweils individuellen Interessen und Neigungen angesichts der konkreten Anforderungen des Fachstudiums anspricht. Nur so kann entstehen, was allseits in der Diskussion gefordert wird: Identifikation, Engagement und kreative Leistungsbereitschaft im Studium.

Dieses Projekt verdeutlicht auch den Wert einer aktiven studentischen Beteiligung an der Studienreform: Studierende wollen engagiert studieren, und sie selbst haben aus ihrer direkten Erfahrungsperspektive ein spezielles Wissen darüber, was sie zu einem zügigen Studium motiviert, wie Erstsemester an das Studium herangeführt werden können, wie Begeisterung für das Fach und für die Wissenschaft entstehen kann und wie Blockaden im Studium sich vermeiden oder auflösen lassen. Dieses spezielle Erfahrungswissen der Studierenden kann für die Studienreform genutzt werden, indem es interessiert nachgefragt wird und vor allem, indem studentische Projekte gefördert werden, wie es derzeit verstärkt an der Universität Heidelberg geschieht. Durch eine solche aktive Beteiligung wird sich bei Studierenden die Verantwortlichkeit für das Studium entfalten.

Das von der Universität geförderte, mit den Lehrenden koordinierte und von der Zentralen Beratungsstelle unterstützte studentische Projekt an der Fakultät für Pharmazie ist ein Beispiel für eine fruchtbare Zusammenarbeit bei der Studienreform, das Schule machen könnte.

Dietmar Chur
Inhalt

1 Vorwort 1

2 Voraussetzungen 2
 2.1 Entwicklung des Konzepts 2
 2.2 Situation vor Projektbeginn 3
 2.2.1 Allgemein 3
 2.2.2 Fachlich 3

3 Konzept der studentischen Betreuung 4
 3.1 Struktur 4
 3.1.1 Grobstruktur der Phase 1
 Allgemeine und Fachliche Erstsemester-Einführung 4
 3.1.2 Grobstruktur der Phase 2
 Semesterbegleitende Fachtutorien 4
 3.2 Ziele 5
 3.3 Inhalte und Themen 6
 3.3.1 Allgemeine Erstsemester-Einführung 6
 3.3.2 Fachliche Erstsemester-Einführung 6
 3.3.3 Semesterbegleitende Fachtutorien 7
 3.4 Weiterentwicklung und Evaluation 7

4 Durchführung 8
 4.1 Phase 1 8
 Allgemeine und Fachliche Erstsemester-Einführung 8
 4.1.1 Allgemeine Erstsemester-Einführung 8
 4.1.2 Fachliche Erstsemester-Einführung 9
 4.2 Phase 2 12
 Semesterbegleitende Fachtutorien 12

5 Finanzierung 14
 5.1 Allgemeine Erstsemester-Einführung 14
 5.2 Fachliche Erstsemester-Einführung 14
 5.3 Semesterbegleitende Fachtutorien 15
6 Resonanz bei den Teilnehmenden

7 Abschließende Beurteilung
 7.1 Allgemeine und Fachliche Erstsemester-Einführung
 7.2 Semesterbegleitende Fachtutorien im Grundstudium
 7.3 Resümee

Anhang
 Dokumentation zur Erstsemester-Einführung und den Fachtutorien
Nach erfolgreicher Durchführung der vierten Allgemeinen und Fachlichen Erstsemester-Einführung der Fachschaft Pharmazie an der Universität Heidelberg möchten wir unser **Konzept einer studentischen Betreuung im Grundstudium** und unsere Erfahrungen anderen auf diesem Gebiet engagierten Institutionen, insbesondere Fachschaften, zugänglich machen.

Ein Workshop zum Thema Erstsemestereinführungsarbeit bei der 77. Bundesverbandstagung des Bundesverbandes der Pharmaziestudierenden in Deutschland (FVP) in Heidelberg und Nachfragen einiger Fachschaften auf weiteren Tagungen haben gezeigt, daß auf diesem Sektor noch Handlungsbedarf besteht.

Wir möchten uns für die freundliche Unterstützung unseres Projekts bedanken bei D. Chur (Leiter des Projekts "Kooperative Beratung" am Zentrum für Studienberatung und Weiterbildung (ZSW) der Universität Heidelberg, für das Tutoren-Training und die Bereitstellung des Rahmenkonzepts für die Allgemeine Erstsemester-Einführung, K.-H. Pistel und K. Dittner (Orientierungs-Referat der Fachschaftskonferenz (FSK) der Universität Heidelberg) für wertvolle Tips und Anregungen, Dekan Prof. Dr. H. Ludwig (Fakultät für Pharmazie der Universität Heidelberg) für das Engagement bei der Durchführung der fachlichen Einführung und der Tutorien, M. Deike (Dekanat der Fakultät für Pharmazie) für die Erledigung der Formalitäten, Prof. Dr. R. Neidlein und Dr. W. Kramer (Pharmazeutisch-Chemisches-Institut der Universität Heidelberg) für die Bereitstellung der Räumlichkeiten, Geräte und Chemikalien, Dr. R. Dillmann-Marschner (Institut für Pharmazeutische Technologie und Biopharmazie der Universität Heidelberg) für ihre tatkräftige Unterstützung im Bereich der Pharmazeutischen Technologie, allen Instituten der Fakultät für Pharmazie der Universität Heidelberg für die Kooperation und nicht zuletzt den studentischen Tutorinnen und Tutoren, die viel Zeit ihrer Semesterferien für die Vorbereitung und die Durchführung geopfert haben.

Heidelberg, im Mai 1996

Markus Bläß
Steffen Schweizer
2 Voraussetzungen

2.1 Entwicklung des Konzepts

Bis zum Wintersemester 1993/94 veranstaltete die Fachschaft Pharmazie eine eintägige allgemeine Einführung, bei der ein kurzer Überblick über den Studienort Heidelberg und den Studienablauf in den ersten Semestern gegeben werden sollte.

Trotz einiger unvermeidbarer Anlaufschwierigkeiten wurde das Konzept von den Studienanfängern gut angenommen.

Aufgrund der guten Resonanz beschlossen die Organisatoren nach Rücksprache mit dem Dekanat der Fakultät, das Projekt fortzuführen und als dauerhaften Bestandteil der Ausbildung im Grundstudium weiterzuentwickeln.

2.2 Situation vor Projektbeginn

2.2.1 Allgemein

Durch die Aufnahme des Hochschulstudiums ergeben sich für Studienanfänger viele Umstellungen. Für einen Teil der Studienanfänger ist der Studienbeginn mit einem Ortswechsel verbunden, so daß sie am Studienort keine anderen Studierenden kennen. Auch sind die Anforderungen, die das Hochschulstudium an Studierende stellt, andere als die der Schule oder als die einer vorher abgeschlossenen Berufsausbildung. Von Seiten der Fakultäten können oftmals keine oder nur unzureichende Orientierungshilfen mangels Personal und Mittel angeboten werden. Unbewältigte Probleme zu Studienbeginn sorgen für negative Erfahrungen bis hin zur Frustration und zum Studienabbruch.

2.2.2 Fachlich

○ Theoretische Kenntnisse

○ Praktisches Arbeiten im Labor

In einigen Bundesländern beinhaltet der Lehrplan im Fach Chemie keine annähernd ausreichende praktische Laborausbildung. Innerhalb eines Bundeslandes hängt der Grad der praktischen Ausbildung stark vom Fachlehrer, der Fachlehrerin und der jeweiligen Schule ab. Desweiteren kann nicht vorausgesetzt werden, daß jeder Studienanfänger Chemie belegt hat.

Als Folge daraus ergeben sich unkalkulierbare Sicherheitsprobleme im Praktikum, die auch bei bester Betreuung durch die jeweiligen Praktikumsassistenten nicht gänzlich auszuschließen sind. Gefährliche Situationen, Laborunfälle und sorgloser, verschwenderischer Umgang mit Chemikalien sowie Laborgeräten können die Folge sein.
3 Konzept der studentischen Betreuung

3.1 Struktur

Das Konzept einer studentischen Betreuung im Grundstudium ist auf zwei Phasen angelegt. In der Phase 1, der Erstsemester-Einführung, liegt der methodische Schwerpunkt in der Heranführung der Studienanfänger an das Fach Pharmazie. Die Phase 2 dagegen zielt auf eine semester- und themenspezifische Prüfungsvorbereitung hin. Sie baut auf der Phase 1 auf.

- Phase 1: Allgemeine und Fachliche Erstsemester-Einführung
- Phase 2: Semesterbegleitende Fachtutorien

3.1.1 Grobstruktur der Phase 1
 Allgemeine und Fachliche Erstsemester-Einführung

- Allgemeine Erstsemester-Einführung
- Fachliche Erstsemester-Einführung

3.1.2 Grobstruktur der Phase 2
 Semesterbegleitende Fachtutorien

- 1. Semester
- 2. Semester
- 3. Semester
- 4. Semester
- Zusätzliche Fachtutorien
3.2 Ziele

Mit unserer Einführung wollen wir zu einer aktiven Orientierung und Integration der Studienanfänger zu Studienbeginn beitragen, damit sie sich mit der neuen Herausforderung auseinandersetzen und auf sie durch Eigeninitiative und Mitgestaltung antworten. "Durch eine solche aktive Handlungsorientierung von Beginn an wird eine entscheidende Weichenstellung für ein erfolgreiches Studium bewirkt. Wichtige Voraussetzungen hierfür sind Zielbewußtsein, aktives Studierverhalten und lebendige soziale Beziehungen im Studium." (Rahmenkonzept des Projekts "Kooperative Beratung")

Folgenden Zielen haben wir in Anlehnung an das Rahmenkonzept des Projekts Kooperative Beratung besondere Bedeutung beigemessen:

- **Vertrautwerden mit den grundlegenden Bedingungen des Studiums (Sachlich-inhaltliche Ebene der Orientierung)**
 - Organisation, Inhalte und Anforderungen des Fachstudiums; genauere Kenntnisse über das Studium im ersten Semester
 - Kenntnis der wesentlichen Einrichtungen von Fakultät und Instituten
 - Überblick über Aufbau und Einrichtungen der Universität; Kennenlernen des Studienortes

- **Persönliche Auseinandersetzung mit der Situation des Studienbeginns und Entwicklung von Eigeninitiative (Persönliche Ebene der Orientierung)**
 - Entwicklung von Neugier und Zuversicht statt Rückzug
 - Klärung der persönlichen Einstellung zum Studium; Überprüfung des Zusammenhangs von Studienwartung, Realität des Fachstudiums und möglichen beruflichen Perspektiven
 - Interesse an der Entfaltung von Studierkompetenzen, aktives Studierverhalten

- **Soziale Integration, lebendiger Kontakt (Soziale Ebene der Orientierung)**
 - Anschluß an andere Erstsemester (Bildung von Studiengruppen)
 - Kontakt zu höhersemestrischen Studierenden und Lehrenden
3.3 Inhalte und Themen

3.3.1 Allgemeine Erstsemester-Einführung

- Auseinandersetzung mit der Situation und mit den persönlichen Reaktionen zu Studienbeginn
- Vertrautwerden mit den Anforderungen des ersten Semesters, den wichtigsten Fächern des Grundstudiums, Erläuterung des Stundenplans
- Kennenlernen der Institute, der Fakultät und ihrer Einrichtungen; Kennenlernen von Fachschaft und anderen studentischen Initiativen
- Austausch über Studienerwartung, Studienrealität und mögliche berufliche Vorstellungen
- Einblick in die historische Entwicklung des Berufsbildes "Apotheker"
- Vertiefung der persönlichen Kontakte sowohl unter den Studienanfängern als auch mit den Tutoren

3.3.2 Fachliche Erstsemester-Einführung

- Nivellierung des unterschiedlichen Wissensstands der Studienanfänger in den Fächern Chemie, Biologie, Mathematik
- Chemikalien und deren typische Reaktionen
- Vermittlung von Laborpraxis
- Sicherer Umgang mit Laborgeräten, Chemikalien und Gefahrstoffen (Arbeitssicherheit)
- Vorbereitung auf die Anforderungen des Erstsemester-Praktikums (Qualitative anorganische Analytik)
- Kennenlernen von Arbeitsmethoden
- Vorstellung von Fachliteratur
- Transfer der Schulmathematik auf naturwissenschaftliche Problemstellungen
- Kennenlernen pharmazeutischer Grundlagen und Grundoperationen aus dem Bereich der pharmazeutischen Technologie (Arzneiformen)
- Demonstration einheimischer Arzneipflanzen
3.3.3 Semesterbegleitende Fachtutorien

- Vertiefung des in Seminaren und Vorlesungen behandelten Stoffes
- Klärung von Fragen und Problemen
- Praxisnahe Klausurvorbereitung
- Problemorientierte Themenwahl

3.4 Weiterentwicklung und Evaluation

Projekte wie unsere Allgemeine und Fachliche Erstsemester-Einführung bedürfen der ständigen Überarbeitung und Weiterentwicklung, um den Problemen der Zielgruppe Studienanfänger noch besser gerecht zu werden. Durch Umfragen, persönliche Erfahrungen der Tutoren und Anregungen sowie Änderungsvorschläge seitens der Studienanfänger können wertvolle Informationen für die Weiterentwicklung des Konzepts gewonnen werden.
4 Durchführung

4.1 Phase 1
Allgemeine und Fachliche Erstsemester-Einführung

4.1.1 Allgemeine Erstsemester-Einführung

Alle Veranstaltungen der Allgemeinen Erstsemester-Einführung werden von studentischen Tutoren organisiert und geleitet.

○ Programmpunkt "Erster Vormittag"

○ Begrüßung und Einführung
 Begrüßung und Vorstellung der Tutoren vor dem Plenum, Vorstellung des Programms, Einteilung in Kleingruppen von maximal sechs Studierenden pro Tisch, Kleingruppen werden von zwei Tutoren betreut

○ Gemeinsames Frühstück

○ Gegenseitiges Kennenlernen und erster Erfahrungsaustausch in Kleingruppen (Tische)

 Ziel: Ermöglichung von Orientierung und Anschluß, Abbau von Hemmungen, Schaffen einer offenen Gesprächsatmosphäre
 Arbeitsform: Paarinterview und anschließende Vorstellung des Interviewpartners

○ Orientierung über das erste Semester und das weitere Grundstudium, Kennenlernen spezieller Aktivitäten an der Fakultät (Fachschaft, Studierendenaustausch) in Kleingruppen (Tische)

 Ziel: Aktive Orientierung, eigene Auseinandersetzung mit offenen Fragen zu Studienbeginn, aktive Beschäftigung mit den formalen Studienanforderungen
 Arbeitsform: Tutor sammelt Fragen auf Papier und strukturiert sie nach Themenbereichen (keine direkte Beantwortung), Behandlung der so gebündelten Fragen unter Einbeziehung der Gruppe, Anhaltspunkt für den Tutor: Informationsblatt mit allen wichtigen Informationen
Mittagessen

- Gemeinsamer Mensabenach: Tutoren und Studienanfänger besuchen gemeinsam die Mensa

Programmpunkt Instruktionsführungen

- Kennenlernen der Institute der Fakultät

 Ziel: Vertrautwerden mit den Einrichtungen der Fakultät
 Arbeitsform: Institutsführungen durch wissenschaftliche Mitarbeiter, Vorstellung der Forschungsgebiete der Institute

Programmpunkt Uni-Rallye

- Erkundung der Institute der Fakultät und zentraler Einrichtungen im Neuenheimer Feld in Gruppen

 Ziel: Vertrautwerden und unbefangen bewegen in der direkten Studienumgebung, aktives Nutzen von Angeboten
 Arbeitsform: Aktive Erkundung durch Rallye

Programmpunkt Apothekenmuseum

- Besuch des Deutschen Apothekenmuseums im Heidelberger Schloß

 Ziel: Einblick in die historische Entwicklung des "Apotheker"-Berufs
 Arbeitsform: Führung durch Angestellte des Apothekenmuseums

Programmpunkt Abschlußparty, Altstadt

- Abschlußparty, Altstadt-Besuch

 Ziel: Vertiefung von während der Einführung geknüpft sozialen Kontakten
 Arbeitsform: Party, geführter Altstadt-Besuch ("Kneipentour")

4.1.2 Fachliche Erstsemester-Einführung

Differenzierte Angaben über die behandelten Themen bzw. Themengebieten können aus dem Anhang entnommen werden.

○ **Grundlagen der Biologie**

Ziel: Nivellierung des unterschiedlichen Wissensstands der Studienanfänger in Biologie, Demonstration einheimischer Arzneipflanzen, Vorstellung von Fachliteratur

Arbeitsform: Seminar, Film, Führung (Botanischer Garten)

Inhalt:

○ Cytologie, Genetik
○ Morphologie, Systematik
○ Exkursion in den Botanischen Garten

○ **Grundlagen der Chemie**

Ziel: Nivellierung des unterschiedlichen Wissensstands der Studienanfänger in Chemie, Chemikalien und deren typische Reaktionen, Transfer der Schulmathematik auf naturwissenschaftliche Problemstellungen, Vorstellung von Fachliteratur

Arbeitsform: Seminar, Übungsblätter

Inhalt:

○ Atommodelle, Periodensystem
○ Aggregatzustände, Mischungen
○ Säuren, Basen
○ Redoxreaktionen
○ Chemie-Labor

Ziel: Sicherer Umgang mit Laborgeräten, Chemikalien und Gefahrstoffen (Arbeitssicherheit), Chemikalien und deren typische Reaktionen, Vorbereitung auf die Anforderungen des Erstsemester-Praktikums (Qualitative anorganische Analytik), Kennenlernen von Arbeitsmethoden

Arbeitsform: Einteilung in Gruppen, Erläuterung der theoretische Grundlagen und Demonstration der Versuche an jeder Station durch den Tutor, jeder Studienanfänger wiederholt den Versuch unter Anleitung und Aufsicht des Tutors

Inhalt:
- Sicherheitsbelehrung, giftige Stoffe, Notfallverhalten, fachgerechte Entsorgung für Laborabfälle
- Trennungen
- Säuren, Basen
- Oxidation, Reduktion
- Reaktionsgeschwindigkeit / Katalyse
- Laborvorbereitung / Vorproben

○ Grundlagen der Mathematik

Ziel: Nivellierung des unterschiedlichen Wissensstands der Studienanfänger in Mathematik, Transfer der Schulmathematik auf naturwissenschaftliche Problemstellungen, Vorstellung von Fachliteratur

Arbeitsform: Seminar, Übungsblätter

Inhalt:
- Grundbegriffe
- Lineare Algebra
- Analysis
- Chemisches Rechnen

○ Einführung in die Pharmazeutische Praxis

Ziel: Kennenlernen pharmazeutischer Grundlagen und Grundoperationen aus dem Bereich der pharmazeutischen Technologie (Arzneiformen), Vorstellung von Fachliteratur

Arbeitsform: Seminar mit Demonstrationen

Inhalt:
- Famulatur
- Terminologie
- Arzneiformen
- Pharmazeutisch-technologische Grundoperationen, Gerätedemonstration
4.2 Phase 2
Semesterbegleitende Fachtutorien im Grundstudium

Differenzierte Angaben über die Inhalte der einzelnen Tutorien können aus dem Anhang entnommen werden.

Ziel: Vertiefung des in Seminaren und Vorlesungen behandelten Stoffs, Klärung von Fragen und Problemen, praxisnahe Klausurvorbereitung problemorientierte Themenwahl
Arbeitsform: Übungsgruppe, Übungsbücher

○ 1. Semester
 ○ Qualitative anorganische Analyse (2 alternative Termine pro Woche)

○ 2. Semester
 ○ Qualitative anorganische Analyse (2 Termine pro Woche)
 ○ Schwerpunkte: Übungsaufgaben, theoretische Grundlagen
 ○ Übungen zur Mathematik für Pharmazeuten (Statistik)

○ 3. Semester
 ○ Organische Chemie (2 alternative Termine pro Woche)
 ○ Physikalische Chemie

○ 4. Semester
 ○ Instrumentelle Analytik (2 Termine pro Woche)
• **Zusätzliche Tutorien**

Bei Bedarf werden zusätzlich Tutorien angeboten für:

• ausländische Studierende
• Studierende mit Schwierigkeiten im stöchiometrischen Rechnen (2. Semester)
• Studierende mit Schwierigkeiten in der organischen Chemie
5 Finanzierung

5.1 Allgemeine Erstsemester-Einführung

Sachmittel vor allem für Bürobedarf (sofern nicht über die Zentrale Beschaffungsstelle der Universität bezogen) werden nur nachträglich gegen Originalquittung und Angabe des Verwendungszwecks rückerstattet. Der Druck des Erstsemester-Infos erfolgt in der Uni-Druckerei und wird direkt in der Verwaltung abgerechnet.

Die Personalmittel für die Tutoren werden in Form von HiWi-Verträgen, die vor der jeweiligen Einführung beantragt werden müssen, abgerechnet. Personalmittel umfassen:

- die inhaltliche Vorbereitung wie die Ausarbeitung des Konzepts
- Verfassen, Überprüfen, Korrektur lesen, Layouten des Erstsemester-Infos
- Koordinierungsaufgaben (Beantragung, Dekoration von Räumen für Fete, Einführung)
- Gruppenbetreuung und -leitung während der Einführung (Frühstück, Deutsches Apothekenmuseum)

Personalmittel und Sachkostenerstattung werden über das Orientierungs-Referat der Fachschaftskonferenz (FSK) bei der Universitätsverwaltung beantragt.

5.2 Fachliche Erstsemester-Einführung

Die Sachkosten der Fachlichen Erstsemester-Einführung fallen hauptsächlich in Form von Chemikalien und Laborabfällen an und werden vom Pharmazeutisch-Chemischen Institut übernommen.

Zusätzliche Laborgeräte (Zentrifugen, Säureflaschen, Spektroskope), die nicht Bestandteil der Erstsemester-Glassätze sind, stellt das Pharmazeutisch-Chemische-Institut zur Verfügung.

Anträge, Kalkulationen und Abrechnungen zur Allgemeinen und Fachlichen Erstsemester-Einführung Pharmazie sind auf den folgenden Seiten zu finden.

5.3 Semesterbegleitende Fachtutorien

Die semesterbegleitenden Fachtutorien werden aus Personalmitteln der Fakultät finanziert. Die Vergütung erfolgt wie bei der Erstsemester-Einführung über HiWi-Verträge.
6 Resonanz bei den Teilnehmenden

Umfrageergebnis
Erstsemester-Einführung Sommersemester 1995

Die Umfrage zur Fachlichen Erstsemester-Einführung wurde am letzten Tag der Einführung im Sommersemester 1995 durchgeführt.

Basis der Umfrage:

<table>
<thead>
<tr>
<th>Fach</th>
<th>Biologie</th>
<th>Chemie</th>
<th>Chemie-Labor</th>
<th>Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragebögen</td>
<td>23</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
</tbody>
</table>

Ergebnisse:

Bei den Punkten "Regelmäßige Teilnahme", "Zeitpunkt", "Zeitdauer pro Tag" und "Gesamtumfang" bestand die Wahlmöglichkeit zwischen Ja und Nein; bei "Erklärungen", "Didaktik" und "Spaß" konnten Noten von eins bis sechs vergeben werden.

<table>
<thead>
<tr>
<th>Fach</th>
<th>Regelmäßige Teilnahme [%]</th>
<th>Zeitpunkt o.k [%]</th>
<th>Zeitdauer pro Tag o.k. [%]</th>
<th>Gesamtumfang o.k. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biologie</td>
<td>87</td>
<td>100</td>
<td>100</td>
<td>78</td>
</tr>
<tr>
<td>Chemie</td>
<td>82</td>
<td>75</td>
<td>89</td>
<td>93</td>
</tr>
<tr>
<td>Chemie-Labor</td>
<td>96</td>
<td>89</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>Mathematik</td>
<td>75</td>
<td>75</td>
<td>82</td>
<td>68</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fach</th>
<th>Biologie</th>
<th>Chemie</th>
<th>Chemie-Labor</th>
<th>Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erklärungen</td>
<td>1,4</td>
<td>2,6</td>
<td>2,0</td>
<td>3,5</td>
</tr>
<tr>
<td>Didaktik</td>
<td>1,7</td>
<td>1,4</td>
<td>1,9</td>
<td>2,6</td>
</tr>
<tr>
<td>Spaß</td>
<td>1,3</td>
<td>2,2</td>
<td>1,7</td>
<td>3,0</td>
</tr>
</tbody>
</table>

Notenbereich: 1 - 6
7 Abschließende Beurteilung

7.1 Allgemeine und Fachliche Erstsemester-Einführung

7.2 Semesterbegleitende Fachtutorien im Grundstudium

7.3 Resümee

Das hier vorliegende Konzept hat sich in Heidelberg bewährt und kann anderen auf dem Ge- biet der Erstsemester-Einführung tätigen Institutionen, insbesondere Fachschaften, zur Über- nahme empfohlen werden.
Anhang

Dokumentation
1 Programm der Erstsemester-Einführung Pharmazie

○ Mittwoch 04.10.95
 9.30 h INF 306 SR 14: Frühstück mit Infos zum Studienablauf und allem, was sonst noch interessant ist *
 ca. 13.00 h Mittagessen
 ca. 14.00 h Institutsführungen durch die Bereiche der Biologie, Chemie, Technologie *

○ Donnerstag 05.10.95
 9.00 h Treffen in INF 306 SR 14 und anschließend Uni-Rallye im Neuenheimer Feld *
 12.00 h Mittagessen
 14.00 h INF 306 SR 14: Grundlagen der Biologie **

○ Freitag 06.10.95
 9.00 h INF 306 SR 14: Einführung in die Pharmazeutische Praxis **
 11.30 h Mittagessen
 13.00 h Exkursion in den Botanischen Garten **
 ca. 14.30 h INF 306 SR 14: Grundlagen der Biologie **

○ Montag 09.10.95
 9.00 h INF 306 SR 14: Grundlagen der Mathematik **
 ca. 12.00 h Mittagessen
 14.00 h INF 346 R 108: Grundlagen der Chemie **

○ Dienstag 10.10.95
 9.00 h INF 306 SR 14: Grundlagen der Mathematik **
 10.15 h Grundlagen der Chemie **
 12.30 h Mittagspause
 14.00 h INF 364 im 2.OG (Vorraum Labor) Einführung in das praktische Arbeiten im Labor **
 ACHTUNG: Kittel nicht vergessen !!

○ Mittwoch 11.10.95
 10.00 h Führung durch das Deutsche Apothekenmuseum im Heidelberger Schloß *
 12.30 h Mittagspause
 14.00 h INF 364, 2.OG: Chemie-Praktikum **

○ Donnerstag 12.10.95
 9.00 h INF 306 SR 14: Grundlagen der Mathematik **
 10.15 h Grundlagen der Chemie **
 12.30 h Mittagspause
 14.00 h INF 364, 2.OG: Chemie-Praktikum **

○ Freitag 13.10.95
 9.00 h INF 306 SR 14: Grundlagen der Mathematik **
 10.15 h Grundlagen der Chemie **
 12.30 h Mittagspause
 14.00 h INF 364, 2.OG: Chemie-Praktikum **
 ab 20.00 h INF 690, Keller: Abschlußparty der Erstsemester-Einführung *

* allgemeine, ** fachliche Veranstaltung, Ende jeweils ca. 17.00 Uhr
2 Allgemeiner Teil der Erstsemester-Einführung

Ablaufplan für den ersten Vormittag

○ Plenum:
 ○ Vorstellung der Tutoren der Allgemeinen und Fachlichen Einführung und des zeitlichen Ablaufs (Programm)

○ Aufteilen der Tutoren in die Kleingruppen
 ○ 6 - 8 Erstsemester und 2 Tutoren pro Tisch

○ Kleingruppe:
 ○ Vorstellung der Tutoren
 ○ Paarinterview:
 Einleitung
 Fragestellung: Wer bin ich? Warum Pharmazie?
 Wo komme ich her? usw....
 Dauer: ca. 10 min

 ○ Gegenseitige Vorstellung der Interviewpartner
 ○ Frühstücke
 ○ Orientierung über das erste Semester und das weitere Grundstudium:
 Fragen auf Papier sammeln und nach Themenbereichen sortieren (keine direkte Beantwortung), Behandlung der so gebündelten Fragen unter Einbeziehung der Gruppe, Anhaltspunkt: Informationsblatt mit allen wichtigen Informationen

○ Mittagessen
3 Fachlicher Teil der Erstsemester-Einführung

3.1 Grundlagen der Biologie

Tutoren: Martina Dürer, Cornelia Süss, Anja Lenhard, Bernd Sorg

Themen:

○ **1. Tag** *(Donnerstag, 05. Oktober)*
 ○ Grundlagen der Genetik (Mendel, molekulare Grundlagen), Film zum Thema
 ○ Proteinbiosynthese
 ○ Drogen zur Behandlung von Erkältungskrankheiten
 ○ Betrachten von Drogenmaterial mit Diskussion und Fragemöglichkeit in kleinen Gruppen
 ○ Mikroskopieren mit Zwiebelzellen und Kamilienblüten

○ **2. Tag** *(Freitag, 06. Oktober)*
 ○ Grundlagen des Zellaufbaus von pro- und eukaryontischen Zellen, Film zum Thema
 ○ Morphologie des Laubblattes und der Blüte
 ○ mikroskopischer Querschnitt durch ein Laubblatt
 ○ Dias bekannter Arzneipflanzen und deren Anwendung
 ○ Dünnschicht-Chromatographie mit schwarzen Stiften (Filterpapier, Methanol)

○ **Exkursion Botanischer Garten** *(Freitag, 06. Oktober)*
 ○ Systematikbeete mit Erklärung der Systematik
 ○ Arzneipflanzenbeete
 ○ spezielle Vegetationsräume
 ○ Gewächshäuser (Tropische Nutzpflanzen)
3.2 Grundlagen der Chemie

Tutoren: Markus Bläß, Uwe Weidenauer, Stephan Schweizer

3.2.1 Themen:

○ 1. Tag (Montag, 09. Oktober)
 ○ Atombau: Atommodule, Quantenzahlen
 ○ Atombau, Isotope, Rein- und Mixtelemente, Nuklidkarte
 ○ Atom- und Molekülorbitale, Elektronenkonfiguration
 ○ Periodensystem
 ○ Bindungstheorie: Ionenbindung, kovalente Bindung, Metallbindung

○ 2. Tag (Dienstag, 10. Oktober)
 ○ Mischungen: Flüssigkeiten, Gase, Festkörper
 ○ Phasen
 ○ Einteilung von Gemischen, Trennmethoden
 ○ Gehalte / intensive Größen
 ○ extensive / intensive Größen
 ○ Konzentration und Massengehalt einstellen

○ 3. Tag (Donnerstag, 12. Oktober)
 ○ Säure-Basen: Säure-Basen-Reaktion
 ○ Säure-Basen-Theorien
 ○ konjugierte Säure-Basen-Paare
 ○ Säure- und Basenkonstante pK_a, pK_b, pK_w
 ○ Stärke von Säuren / Basen
 ○ Ionenprodukt des Wassers
 ○ Massenwirkungsgesetz
 ○ pH, pOH, pH-Wertberechnung von starken und schwachen Säuren

○ 4. Tag (Freitag, 13. Oktober)
 ○ Redoxreaktionen: Oxidation, Reduktion
 ○ Oxidationszahl bestimmen
 ○ Redoxgleichung aufstellen und ausgleichen
 ○ Dis- und Komproportionierung
 ○ Edle und unedle Metalle
 ○ elektrochemische Spannungsreihe
1. $\text{Mn}^{2+} + \text{Br}_2 + \text{OH}^- \rightarrow \text{MnO}_2 + \text{Br}^- + \text{H}_2\text{O}$

Red. :

Ox. :

2. $\text{Zn} + \text{HCl} \rightarrow \text{Zn}^{2+} + \text{Cl}^- + \text{H}_2$

Red. :

Ox. :

3. $\text{I}_2 + \text{OH}^- \rightarrow \text{I}^- + \text{H}_2\text{O}_2$

Red. :

Ox. :

4. $\text{MnO}_4^- + \text{Mn}^{2+} + \text{OH}^- \rightarrow \text{MnO}_2 + \text{H}_2\text{O}$

Wie bezeichnet man eine solche Reaktion?

Red. :

Ox. :

5. $\text{Cu}^0 + \text{HNO}_3_{(\text{conc.})} \rightarrow \text{Cu}^{2+} + \text{NO}_2$

Red. :

Ox. :

6. $\text{CHO} + \text{I}^- + \text{Cu}^{2+} + \text{OH}^- \rightarrow \text{COOH} + \text{Cu}_2\text{O} + \text{H}_2\text{O}$

Glucose

ziegelrot
1. $\text{Mn}^{2+} + \text{Br}_2 + 4 \text{OH}^- \rightarrow \text{MnO}_2 + 2 \text{Br}^- + 2 \text{H}_2\text{O}$

 Red. : $\text{Br}_2 + 2 \text{e}^- \rightarrow 2 \text{Br}^-$

 Ox. : $\text{Mn}^{2+} + 4 \text{OH}^- \rightarrow \text{MnO}_2 + 2 \text{H}_2\text{O} + 2 \text{e}^-$

2. $\text{Zn} + 2 \text{HCl} \rightarrow \text{Zn}^{2+} + 2 \text{Cl}^- + \text{H}_2$

 Red. : $2 \text{HCl} + 2 \text{e}^- \rightarrow \text{H}_2 + 2 \text{Cl}^-$

 Ox. : $\text{Zn} \rightarrow \text{Zn}^{2+} + 2 \text{e}^-$

3. $\text{I}_2 + 2 \text{OH}^- \rightarrow 2 \text{I}^- + \text{H}_2\text{O}_2$

 Red. : $\text{I}_2 + 2 \text{e}^- \rightarrow 2 \text{I}^-$

 Ox. : $2 \text{OH}^- \rightarrow \text{H}_2\text{O}_2 + 2 \text{e}^-$

4. $2 \text{MnO}_4^- + 3 \text{Mn}^{2+} + 2 \text{H}_2\text{O} + 4 \text{OH}^- \rightarrow 2 \text{MnO}_2 + 4 \text{H}_2\text{O}$

 Synproportionierung oder Komproportionierung

 Red. : $\text{MnO}_4^- + 3 \text{e}^- + 2 \text{H}_2\text{O} \rightarrow \text{MnO}_2 + 4 \text{OH}^- \times 2$

 Ox. : $\text{Mn}^{2+} + 2 \text{H}_2\text{O} \rightarrow \text{MnO}_2 + 2 \text{e}^- + 4 \text{H}^+ \times 3$

5. $\text{Cu}^0 + 2 \text{HNO}_3(\text{conc.}) + 2 \text{H}_3\text{O}^+ \rightarrow \text{Cu}^{2+} + 2 \text{NO}_2 + 4 \text{H}_2\text{O}$

 Red. : $\text{HNO}_3 + 2 \text{H}_3\text{O}^+ + \text{e}^- \rightarrow \text{NO}_2 + 2 \text{H}_2\text{O} \times 2$

 Ox. : $\text{Cu} \rightarrow \text{Cu}^{2+} + 2 \text{e}^-$

6. $\text{Cu}^{2+} + \text{OH}^- \rightarrow \text{Cu}_2\text{O} + \text{H}_2\text{O}$

 ziegelrot

CHO

H-C-OH

H-C-OH

CH_2OH

Glucose

$+ I$

COOH

H-C-OH

H-C-OH

CH_2OH

$\text{Cu}_2\text{O} + \text{H}_2\text{O}$

$+ \text{III}$
3.3 Chemie-Labor

Tutoren: Markus Bläs, Uwe Weidenauer, Stephan Schweizer, Steffen Schweizer
Anne Haas, Annette Lenz, Susanne Mildenberger, Frank Nemetschek,
Sybille Trauvetter

3.3.1 Themen:

○ 1. Tag (Dienstag, 10. Oktober)

 ○ Sicherheitsbelehrung, Gefahrstoffe, Notfallverhalten,
 fachgerechte Entsorgung von Laborabfällen

 ○ Trennungen: Sublimation
 Extraktion
 Fällung

○ 2. Tag (Mittwoch, 11. Oktober)

 ○ Säuren und Basen: pH-Wert von Säuren, Basen und Salzen
 Ammoniak-Nachweis
 Freisetzung von Säuren durch stärkere oder schwerflüchtige Säuren
 Neutralisationswärme

 ○ Oxidation und Reduktion I:

 Redoxreaktion
 Tollensprobe (Silberspiegel)

○ 3. Tag (Donnerstag, 12. Oktober)

 ○ Oxidation und Reduktion II:

 pH-Wert-Abhängigkeit der Redoxreaktionen
 edle und unedle Metalle

 ○ Reaktionsgeschwindigkeit / Katalyse

○ 4. Tag (Freitag, 13. Oktober)

 ○ Laborvorbereitung / Vorproben:

 Boraxerle (vgl. Jander-Blasius)
 Flammenfärbung / Spektroskopie (vgl. Jander-Blasius)
 Zinn-Leuchtprobe (vgl. Jander-Blasius)
 Literaturnachweis: Einzelnachweis nach Literaturvorschrift
 Fluorid-Kriechprobe (vgl. Jander-Blasius)
 Anionenvorprobe mit konzentrierter Schwefelsäure
 Modellanalyse
3.3.2 Versuchsanleitungen

○ Trennungen

1. Sublimation:
100 mg eines Gemisches von Natriumchlorid und Jod werden in einem kleinen, mit einem UHrglas bedeckten Erlenmeyerschrank langsam erhitzt. Das Jod sublimiert und schlägt sich am UHrglas nieder (Abzug!).

2. Extraktion:
3 ml einer schwach HCl-sauren FeCl₃-Lösung wird in einem Reagenzglas mit dem gleichen Volumen NH₄SCN-Lösung versetzt; mit ca. 3 ml Ether überschichtet und das Reagenzglas vorsichtig geschüttelt. Farbe der Phasen?

3. Fällung:
3 ml einer schwach HCl-sauren FeCl₃-Lösung wird in einem Reagenzglas mit einigen Tropfen Kaliumhexacyanoferrat-(II)-Lösung versetzt, der Niederschlag in einem Zentrifugenglas abzentrifugiert, der Überstand dekantiert und nochmals mit einigen Tropfen Kaliumhexacyanoferrat-(II)-Lösung versetzt.

○ Säuren und Basen

1. Je 1 ml der folgenden Säuren oder Basen werden in ein Reagenzglas gegeben und der pH-Wert mit Universalindikatorpapier überprüft: konzentrierte und verdünnte Salzsäure (HCl), Essigsäure (H₃C-COOH), verdünnte Salpetersäure (HNO₃), verdünnte Natronlauge (NaOH), konzentrierte und verdünnte Ammoniaklösung (NH₃).

3. Ammoniak-Nachweis:

4. Freisetzung von Säuren durch stärkere oder schwerflüchtige Säuren:
In einem Reagenzglas wird eine Spatelspitze Natriumacetat (fest) mit 0,5 ml konzentrierter H₂SO₄ versetzt (Vorsicht, Abzug!), alternativ: das Natriumacetat wird in einer Reibschale mit Kaliumhydrogensulfat (KHSO₄) verrieben. Geruch? Prüfung der Gasphase mit feuchtem pH-Papier! Entsprechend wird etwas NaCl mit konzentrierter H₂SO₄ versetzt (Vorsicht, Abzug 1), die Gasphase mit feuchtem pH-Papier und mit konzentrierter NH₃-Lösung (UHrglas) geprüft. Eine Spatelspitze Calciumcarbonat (CaCO₃) wird auf die Tüpfelplatte gegeben und mit 2 ml Salzsäure versetzt. Beobachtung?

5. Neutralisationswärme:
Man mischt rasch 20 ml zweimolare Salzsäure mit 20 ml zweimolärer Natronlauge und mißt die Temperaturänderung mit einem Thermometer.

6. Hydratationswärme:
Konzentrierte Schwefelsäure soll zu verdünnter Schwefelsäure mit Wasser verdünnt werden (Reihenfolge?, Abzug?) Temperaturänderung?
Oxidation und Reduktion

1. Ein Eisennagel wird in eine verdünnte Kupfersulfat-Lösung eingetaucht. Beobachtung?

Reaktionsgeschwindigkeit / Katalyse

1. Bei Raumtemperatur mischt man gleiche Mengen von ca. 0,1 m Eisen-(III)-chlorid-Lösung und ca. 0,05m Natriumthiosulfat-Lösung. Man notiert die Zeit, in der die rotviolette Farbe verblaßt.

Laborvorbereitung / Vorproben

 Man erhitze eine Spatelspitze Natriumfluorid mit einigen ml konzentrierter Schwefelsäure in einem trockenen Reagenzglas. Die auftretenden Gasblasen von Fluorwasserstoffsaure (HF) kriechen öalrig an der Glaswand empor, und beim Schütteln fließt die Schwefelsäure wie Wasser an einer fettigen Unterlage ab. Die Oberfläche des Glases wird infolge der Ätzung durch HF so verändert, daß sie von der Schwefelsäure nicht mehr benetzt wird.
5. Anionenproben mit konzentrierter Schwefelsäure
 In je einem Reagenzglas erhitzt man einige Körnchen KBr, KI und KNO₃ mit konzentrierter Schwefelsäure. Beobachtung? (Abzug!)
6. Literaturachweis nach Wahl (Durchführung wie im Jander-Blasius beschrieben)
3.3.3 Chemikalien-Liste

○ Feststoffe:

\[
\begin{align*}
\text{AgNO}_3 & \quad \text{AlCl}_3 \cdot 6 \text{H}_2\text{O} & \quad \text{BaCl}_2 \\
\text{Borax} & \quad \text{CaCl}_2 & \quad \text{CaCO}_3 \\
\text{Co (II)-Salz} & \quad \text{Cu-Blech} & \quad \text{CuSO}_4 \\
\text{CuCl}_2 & \quad \text{Eisennagel} & \quad \text{Fe (II)-Salz} \\
\text{FeCl}_3 & \quad \text{Glucose} & \quad \text{Jod} \\
\text{K}_2\text{Fe(CN)}_6 & \quad \text{KHSO}_4 & \quad \text{KMnO}_4 \\
\text{KBr} & \quad \text{KCl} & \quad \text{KI} \\
\text{KNO}_3 & \quad \text{LiCl} & \quad \text{Mg-Späne} \\
\text{Mn (II)-Salz} & \quad \text{NaCl} & \quad \text{NaOH} \\
\text{Natriumacetat} & \quad \text{NaF} & \quad \text{Na}_2\text{S}_2\text{O}_3 \\
\text{NH}_4\text{Cl} & \quad \text{NH}_4\text{SCN} & \quad \text{Ni (II)-Salz} \\
\text{PbCl}_2 & \quad \text{PbSO}_4 & \quad \text{SnCl}_2 / \text{SnCl}_4 \\
\text{SrCl}_2 & \quad \text{Zn-Körner} & \\
\end{align*}
\]

○ Flüssigkeiten:

\[
\begin{align*}
10\% \text{ige Wasserstoffperoxid-Lösung} & \quad \text{Ammoniaklösung} \\
\text{Essigsäure} & \quad \text{Ether} & \quad \text{Salpetersäure} \\
\text{Salzsäure} & \\
\end{align*}
\]
3.3.4 Sicherheitsbelehrung

- Sicherheit im Labor
 - Immer Schutzbrille tragen!
 - Kittel tragen, aber bedenken 100% "pure cotton"
 - Schutzhandschuhe - zwar nicht immer notwendig, aber beim Umgang mit ätzenden Substanzen empfehlenswert (Latex-Einweghandschuhe oder normale Haushaltshandschuhe - häufig wechseln, da organische Substanzen mit der Zeit durchdiffundieren können)
 - Essen, Trinken und Rauchen - nicht im Labor, und vorher immer die Hände waschen
 - Lagerung und Entnahme von Chemikalien - Abfüllung in PE-Flaschen im ersten Semester notwendig - Unbedingt korrekt beschriften und immer im Schrank lagern und nicht auf dem Labortisch
 - Abzugbenutzung - bei ätzenden Substanzen, Vorproben (z.B. Borax-Perle), am besten immer, aber leider nicht möglich, da stets Abzugmangel besteht!
 - Vorsicht mit dem Rüssel - Vorsicht ist besonders bei Geruchsproben geboten, immer zunächst nur leicht zufächeln und nicht die Nase in die Schale halten
 - Verdünnen von Säuren und Laugen - Grundsätzlich gilt: "Zuerst das Wasser dann die Säure, sonst passiert das Ungeheuer."

- Vergiftungen, Unfälle
 - Immer den aufsichtsführenden Assistenten benachrichtigen
 - Notruf - falls Sanitäter noch nicht von Assistent benachrichtigt (Sanitäter: Heiko Rudy, 2. OG) - Im Extremfall selbst Krankenwagen rufen
 - Brandherde löschen (Über Standorte der Feuerlöscher informieren)
 - Austretendes Gas birgt große Gefahren - Sauerstoff-Selbstreter tragen
 - Erste Hilfe - soweit möglich (Augendusche, Löschecke, Notduschen, Borsäure-Lösung, Erste Hilfe-Schrank im Labor)

- Giftige Stoffe
 - Säuren - lokale Verätzungen auf der Haut
 - Basen - sehr gefährlich für die Augen, da sie sofort die Hornhaut zerstören, was zur Blindheit führen kann (Sofort: Augendusche, Borsäure-Lösung)
 - Schwermetalle - Blei, Quecksilber, Wismut, Arsen, Thallium, Antimon, Zinn, Cadmium, Kupfer, Barium, Kobalt, Chrom, Nickel
 - Gase - Schwefelwasserstoff (Geruch: Faule Eier), Nitrose Gase (Stechender Geruch), Schwefeldioxid (Stechender Geruch), Chlor (Geruch: Typisch, von Schwimmbädern bekannt), Blausäure (Mandelartiger Geruch), Bromdämpfe, Aromatische Amine ("An der Nordseeküste" - Fischgeruch in penetrantester Form)
3.4 Grundlagen der Mathematik

Tutoren: Markus Bläß, Uwe Weidenauer, Christian Reiß, Anke Schulz

3.4.1 Themen:

○ 1. Tag (Montag, 09. Oktober)
 ○ Zahlenmengen
 ○ Grundrechenarten, Grundbegriffe, Grundgesetze
 ○ Bruchrechnung
 ○ Aufstellen, Lösen einfacher Bruchgleichungen (am Beispiel Dreisatz)
 ○ Funktionsbegriff
 ○ lineare, quadratische Gleichungen lösen
 ○ Polynome höheren Grades
 ○ Polynomdivision Nullstellenberechnung, Linearfaktorzerlegung
 ○ Potenzrechenregeln
 ○ Logarithmen

○ 2. Tag (Dienstag, 10. Oktober)
 ○ Analysis
 ○ ganzrationale / gebrochenrationale Funktionen
 ○ Eigenschaften von Funktionen
 ○ Differentialrechnung
 ○ Ableitungsregeln: Linearität, Produkt-, Quotienten-, Kettenregel
 ○ partielle Ableitungen
 ○ Differential einer Variablen, Funktion

○ 3. Tag (Donnerstag, 11. Oktober)
 ○ Integralrechnung
 ○ Stammfunktion
 ○ bestimmtes und unbestimmtes Integral
 ○ Integrationsregeln

○ 4. Tag (Freitag, 12. Oktober)
 ○ Chemisches Rechnen: Aufstellen und Lösen einfacher Gleichungen am Beispiel von Gehaltsgrößen Anwendung mathematischer Grundlagen auf physikalisch-chemische Probleme (Berechnungen mit dem Massenwirkungsgesetz, Löslichkeitsprodukt)
3.4.2 Übungsblatt Grundlagen der Mathematik - Aufgaben -

○ Prozentrechnen

1. 25,0 g einer Rezeptur enthalten 1,5 g Carbo activatus. Wie viel Prozent Kohle enthält die Rezeptur?

2. Wie viel prozentig ist eine Natronlauge, die in 85,0 g 6,0 g reines Natriumhydroxid enthält?

3. Wie viel Prozent wasserfreies Natriumcarbonat enthält Na₂CO₃ 10 H₂O ? (und wie viel Prozent Wasser enthält die Substanz?)

4. 250,0 g einer 15%igen Natriumchloridlösung sollen hergestellt werden. Wie vie NaCl wird hierfür benötigt?

○ Dreisatz-Rechnungen und Verhältnisgleichungen

1. 91 Tropfen essigsäure Tonerde wiegen 3,5 g. Wie viele Tropfen entsprechen 2,0 g?

2. Nach einer Vorschrift enthalten 12 gemischte Pulver insgesamt 0,6 g Coffein und 3,6 g Acetylsalicylsäure. Wie viel Coffein und Acetylsalicylsäure ist für 75 Pulver einzuwiegern?

3. Ein Erwachsener sollte täglich 150 µg lod einnehmen. Mit wie viel Gramm eines lodsalzes, das in 100 g 2,0 mg lod enthält, wäre der Tagesbedarf an lod zu decken?

4. Eine Rezeptur lautet:

Rp. Atropini 0,0005
Sacch. Lactis ad 50,0 m. f. plv.

Verwendet wird eine Atropin-Verreibung "1+999". Wie viel dieser Verreibung ist einzuwiegern?

5. Für eine Pulvermischung wird 0,03 g Extractum Belladonnae benötigt. Wie viel einer Verreibung "Extractum Belladonnae 1+19" ist einzuwiegern?
3.5 Einführung in die Pharmazeutische Praxis

Tutor: Thilo Bertsche

Themen:

- **Famulatur:**
 Entstehung und Bedeutung der Famulatur
 organisatorische Gegebenheiten zum Ablauf
 Ableistung der zweiten Famulaturhälfte im EG-Ausland

- **Arzneimittel:**
 Anwendungsbereiche von Arzneimitteln
 Zusammensetzung eines Arzneimittels
 Weg eines Arzneimittels durch den Organismus am Beispiel eines oral
 verabreichten Arzneimittels
 Entstehung von Arzneistoffen
 wichtige Arzneimittelgruppen

- **Rezept:**
 pharmazeutische Abkürzungen auf Rezepten
 Aufbau einer Gebrauchsinformation
 Vorstellung Rezeptformulars

- galenischer Geräte
- Arzneiformen nach DAB 6 bis DAB 10 und DAC
- ausgewählte Herstellungsprozesse
4 Tutorien im Grundstudium (Wintersemester 1995/96)

4.1 Tutorien für Pharmaziestudierende des 1. Semesters

- Qualitative anorganische Analyse

 2 alternative Termine pro Woche

 Inhalt:

 - Aufklärung über den Umgang mit Chemikalien, Laborsicherheit
 - Theoretische Grundlagen
 - Laborbetreuung, Hilfestellung in praktischen Fragen
 - Prüfungsvorbereitung

4.2 Tutorien für Pharmaziestudierende des 2. Semesters

- Quantitative anorganische Analyse

 Schwerpunkt Übungsaufgaben

 Inhalt:

 - Stöchiometrisches Rechnen
 - Aufgaben, Rechenbeispiele
 - Laborbetreuung, Hilfestellung in praktischen Fragen
 - Prüfungsvorbereitung

 Schwerpunkt Theorie

 Inhalt:

 - Theoretischer Hintergrund der quantitativen Bestimmungsmethoden
 - Laborbetreuung, Hilfestellung in praktischen Fragen
 - Prüfungsvorbereitung

- Übungen zur Mathematik für Pharmazeuten (Statistik)

 Inhalt:

 - Mathematische Begriffe
 - Rechenbeispiele, Übungsblätter
 - Prüfungsvorbereitung
 - Beantwortung aufkommender Fragen
4.3 Tutorien für Pharmaziestudierende des 3. Semesters

- **Organische Chemie**

 2 alternative Termine pro Woche

 Inhalte:

 - Einführung in die organische Synthese
 - Umgang mit Chemikalien
 - Aufgaben, Übungsblätter
 - Prüfungsvorbereitung

- **Physikalische Chemie**

 Inhalte:

 - Einführung in die Physikalische Chemie
 - Aufgaben, Übungsblätter
 - Prüfungsvorbereitung
 - Beantwortung von Fragen

4.4 Tutorien für Pharmaziestudierende des 4. Semesters

- **Instrumentelle Analytik**

 2 Termine pro Woche

 Inhalte:

 - Instrumentelle Analytik (IR, GC, MS, HPLC, Elektrophorese, NMR, UV-Vis)
 - Aufgaben, Rechenbeispiele
 - Hilfestellung in praktischen Fragen
 - Prüfungsvorbereitung

4.5 Zusätzlich werden bei Bedarf angeboten:

- **Quantitative anorganische Analyse**

 Zielgruppe: ausländische Studierende
 Studierende mit Schwierigkeiten im stöchiometrischen Rechnen

- **Organische Chemie**

 Zielgruppe: ausländische Studierende
 Studierende mit Schwierigkeiten in der organischen Chemie
5 Finanzierung

Personalkostenkalkulation Fachliche Erstsemester-Einführung WS 1995/96

<table>
<thead>
<tr>
<th>Fach</th>
<th>Biologie</th>
<th>Chemie</th>
<th>Labor</th>
<th>Mathematik</th>
<th>Pharm. Praxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benötigte Tutoren</td>
<td>2 - 4</td>
<td>3</td>
<td>6 - 8</td>
<td>1 - 2</td>
<td>1</td>
</tr>
<tr>
<td>Anteil an den Gesamtstunden [%]</td>
<td>13,75</td>
<td>30,39</td>
<td>33,75</td>
<td>9,69</td>
<td>2,34</td>
</tr>
</tbody>
</table>

Grundlagen der Biologie

<table>
<thead>
<tr>
<th></th>
<th>Tutoren</th>
<th>Stunden</th>
<th>Tutoren-stunden</th>
<th>Vorbereitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do, 05.10.95 14 - 17 Uhr</td>
<td>Seminar I</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Fr, 06.10.95 13 - 15 Uhr</td>
<td>Botanischer Garten</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Fr, 06.10.95 15 - 17 Uhr</td>
<td>Seminar II</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Grundlagen der Mathematik

<table>
<thead>
<tr>
<th></th>
<th>Tutoren</th>
<th>Stunden</th>
<th>Tutoren-stunden</th>
<th>Vorbereitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo, 09.10.95 09 - 12 Uhr</td>
<td>Seminar I</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Di, 10.10.95 09 - 10.15 Uhr</td>
<td>Seminar II</td>
<td>1</td>
<td>1,25</td>
<td>1,25</td>
</tr>
<tr>
<td>Do, 12.10.95 09 - 10.15 Uhr</td>
<td>Seminar III</td>
<td>1</td>
<td>1,25</td>
<td>1,25</td>
</tr>
<tr>
<td>Fr, 13.10.95 09 - 10.15 Uhr</td>
<td>Seminar IV</td>
<td>2</td>
<td>1,25</td>
<td>2,5</td>
</tr>
</tbody>
</table>

Grundlagen der Chemie

<table>
<thead>
<tr>
<th></th>
<th>Tutoren</th>
<th>Stunden</th>
<th>Tutoren-stunden</th>
<th>Vorbereitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Di, 10.10.95 14 - 17 Uhr</td>
<td>Labor I</td>
<td>6</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>Mi, 11.10.95 14 - 17 Uhr</td>
<td>Labor II</td>
<td>6</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>Do, 12.10.95 14 - 17 Uhr</td>
<td>Labor III</td>
<td>6</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>Fr, 13.10.95 14 - 17 Uhr</td>
<td>Labor IV</td>
<td>6</td>
<td>3</td>
<td>18</td>
</tr>
</tbody>
</table>

Grundlagen der Chemie

<table>
<thead>
<tr>
<th></th>
<th>Tutoren</th>
<th>Stunden</th>
<th>Tutoren-stunden</th>
<th>Vorbereitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo, 09.10.95 14 - 17 Uhr</td>
<td>Seminar I</td>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Di, 10.10.95 10.15 - 12.30 Uhr</td>
<td>Seminar II</td>
<td>3</td>
<td>2,25</td>
<td>6,75</td>
</tr>
<tr>
<td>Do, 12.10.95 10.15 - 12.30 Uhr</td>
<td>Seminar III</td>
<td>3</td>
<td>2,25</td>
<td>6,75</td>
</tr>
<tr>
<td>Fr, 13.10.95 10.15 - 12.30 Uhr</td>
<td>Seminar IV</td>
<td>3</td>
<td>2,25</td>
<td>6,75</td>
</tr>
</tbody>
</table>

Einführung in die Pharmazeutische Praxis

<table>
<thead>
<tr>
<th></th>
<th>Tutoren</th>
<th>Stunden</th>
<th>Tutoren-stunden</th>
<th>Vorbereitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fr, 06.10.95 09 - 11.30 Uhr</td>
<td>Seminar I</td>
<td>1</td>
<td>3</td>
<td>2,5</td>
</tr>
</tbody>
</table>

Überarbeitung des Plans der Fachlichen Einführung

Zeitplan

<table>
<thead>
<tr>
<th></th>
<th>Tutoren</th>
<th>Stunden</th>
<th>Tutoren-stunden</th>
<th>Vorbereitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>8,25</td>
</tr>
</tbody>
</table>

Vorbereitung Labor

Chemikalien, Raum, Organisation

<table>
<thead>
<tr>
<th></th>
<th>Tutoren</th>
<th>Stunden</th>
<th>Tutoren-stunden</th>
<th>Vorbereitung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gesamtstunden</th>
<th>Biologie</th>
<th>Chemie</th>
<th>Mathematik</th>
<th>Pharm. Praxis</th>
<th>Vorbereitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>320</td>
<td>44</td>
<td>205,25</td>
<td>31</td>
<td>7,5</td>
<td>32,25</td>
</tr>
</tbody>
</table>
Personalkostenplan Allgemeine Erstsemester-Einführung Pharmazie

Allgemeiner Zweck unserer Einführung

Inhalt und Aufbau

Am 05. Oktober steht die Uni-Rallye durch das Neuenheimer Feld auf dem Programm. Die Studienanfänger sollen in Form einer Rallye die für sie wichtigen Einrichtungen und Gebäude im Neuenheimer Feld kennenlernen.

Am 11. Oktober findet die Führung durch das Deutsche Apotheken-Museum im Heidelberger Schloß statt. Im Apothekenmuseum erhalten die ErstsemesterInnen einen Einblick in die historische Entwicklung des Apotheker-Berufs, den sie als Ausbildungsziel anstreben.

Vorbereitungen der Veranstaltungen:

Zunächst wird eine umfangreiche Informationsbroschüre in Form eines Erstsemester-Infos erstellt bzw. überarbeitet, die sämtliche wichtige Informationen für das erste Semester, den Uni-Aufbau, den gesamten Studienablauf und den Studienort Heidelberg enthält.

Weitere Vorbereitungstreffen sind nötig, um ein komplettes Konzept für die Einführung zu erarbeiten bzw. das bestehende Konzept zu überarbeiten. Es wird zum Beispiel ein genauer Zeitplan für die Einführung, eine Uni-Rallye erarbeitet, ein Einladungsschreiben verfasst.

Personalaufwand Allgemeine Erstsemester-Einführung Pharmazie WS 95/96

<table>
<thead>
<tr>
<th>Vorgang</th>
<th>Betreuer</th>
<th>Stunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Überarbeitung des Layout des Erstsemester-Infos</td>
<td>4</td>
<td>42</td>
</tr>
<tr>
<td>Konzept Erstsemester-Einführung</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Vorbereitung Uni-Rallye</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Organisation, Dekoration des Raumes für die Abschlußparty</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Gruppenbetreuung während der Einführung</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>Apothekenmuseum</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Summe</td>
<td></td>
<td>112</td>
</tr>
</tbody>
</table>

Mit freundlichen Grüßen

Fachschool Pharmazie
an der Ruprecht-Karls-Universität Heidelberg
Erstsemestereinführung Pharmazie

hier: Kostenabrechnung für Erstsemester-Einführung WS 95/96

Begründung siehe Schreiben vom 09. August 1995

<table>
<thead>
<tr>
<th>Quittung Nr.</th>
<th>Zweck der Ausgabe</th>
<th>Einzelausgabe [DM]</th>
<th>Summe der Einzelausgaben [DM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bürobedarf</td>
<td>25,9</td>
<td>25,9</td>
</tr>
<tr>
<td>2</td>
<td>Frühstück</td>
<td>106,36</td>
<td>145,36</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>39,00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mittagessen</td>
<td>155</td>
<td>155</td>
</tr>
<tr>
<td>5</td>
<td>Abschlußparty</td>
<td>10,93</td>
<td>183,13</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>172,20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pfandgutschrift</td>
<td>37,50</td>
<td>-37,5</td>
</tr>
<tr>
<td></td>
<td>Gesamtsumme [DM]</td>
<td></td>
<td>471,89</td>
</tr>
</tbody>
</table>

Anlage Quittungen

Mit freundlichen Grüßen

Fachschaft Pharmazie
an der Ruprecht-Karls-Universität Heidelberg

Heidelberg, den 15. November 1995
6 Beteiligte Tutorinnen und Tutoren

6.1 Erstsemester-Einführung

- **Allgemeine Einführung**

- **Biologie**
 Martina Düfer, Stefanie Hub, Tina Kunz, Anja Lenhardt, Tanja Müller, Cornelia Süß, Anja Toporski, Michael Bentz, Thilo Bertsche, Wolfgang Heller, Christian Möskes, Jürgen Schöllig, Bernd Sorg, Jens Waidelich

- **Chemie**
 Heike Hecht, Markus Bläß, Steffen Schweizer, Stephan Schweizer, Uwe Weidenauer

- **Chemie-Labor**
 Regina García-Boy, Anne Haas, Annette Lenz, Andrea Kastl, Susanne Mildenberger, Syille Trauvetter, Björn Bauer, Thilo Bertsche, Markus Bläß, Thomas Kirchner, André Mang, Martin Mauder, Frank Nemetschek, Tobias Nohe, Eberhard Reiner, Bernd Sorg, Steffen Schweizer, Stephan Schweizer, Uwe Weidenauer

- **Mathematik**
 Regina García-Boy, Heike Hecht, Tina Kunz, Anke Schulz, Michael Bentz, Wolfgang Heller, Christian Reiß, Uwe Weidenauer

- **Pharmazeutische Praxis**
 Thilo Bertsche, Jürgen Schöllig

6.2 Semesterbegleitende Fachtutorien

- **Studentische Tutorinnen und Tutoren**

- **Assistentinnen und Assistenten**
 Imke Brahms, Petra Groß, Claudia Hölters, Friderike Morhard, Ingmar Köser, Peter Ripplinger, Willi Scigalla
In der Schriftenreihe *Beratung und Kompetenzentwicklung an der Hochschule* liegen außerdem vor:

Band 1:

Mario Altreiter, Dietmar Chur

Der Bedarf an Fördermaßnahmen für Schlüsselkompetenzen aktiven Studierens
Ergebnisse einer Befragung von Fachberatern und Fachschaften an der Universität Heidelberg im Sommersemester 1993
Oktober 1995

Band 2:

Dietmar Chur

Die Förderung von Schlüsselkompetenzen aktiven Studierens
also Aufgabe einer Kooperation von Zentraler Beratungsstelle und Fakultäten
Konzeption des Projekts Kooperative Beratung - Strukturen und Leitlinien für die Zusammenarbeit
November 1995

Band 3:

Dietmar Chur

Zwischenbericht des Projekts Kooperative Beratung
für das Jahr 1995
Entwicklung von Fördermaßnahmen für Schlüsselkompetenzen von Studierenden
Strukturentwicklung für ein kooperatives Beratungssystem an der Universität Heidelberg
Juni 1996