More information about the Heidelberg Forum of Molecular Catalysis at:

Prof. Dr. Peter Hofmann
Organisch-Chemisches Institut
Universität Heidelberg
Im Neuenheimer Feld 270
69120 Heidelberg
Germany
Tel. +49 (0) 6221-54-8502
Fax +49 (0) 6221-54-4885
E-Mail: ph@uni-hd.de
or
www.uni-heidelberg.de/institute/fak12/

More information about the Sonderforschungsbereich 623 “Molekulare Katalysatoren” at:

www.sfb623.uni-hd.de

How to reach us

By car:
At the end of autobahn A656 turn left at the traffic light and follow the sign “Chirurgie” until you are on the bridge (“Ernst Waltz Brücke”). Go straight on “Berliner Strasse” to the third traffic light and turn left into the “Neuenheimer Feld”, direction “Kopfklinik”. After approximately 200 meters you will find a parking lot on the right side as well as 200 meters further on the left side a parking lot in front of the “Kopfklinik”.

(*) At the following crossroad go straight and then turn right after 50 meters. You will find the Chemical Institute to your left and after a distance of 100 meters the lecture hall (Hörsaalzentrum Chemie) to your right.

By public transport:
From the main station: take the tram 21 or 24 (direction “Handschuhsheim”) and leave at the third stop (“Bunsen Gymnasium”). You will face the Shell petrol station. Cross the street towards the opposite side and turn into “Neuenheimer Feld”.

(*) At the following crossroad go straight and then turn right after 50 meters. You will find the Chemical Institute to your left and after a distance of 100 meters the lecture hall (Hörsaalzentrum Chemie) to your right.

From the historic city center: Take the bus line 31 (direction “Neuenheimer Feld, Sportzentrum Nord”) departing from “Universitätsplatz” or “Bismarckplatz”. Leave at the stop “Bunsen-Gymnasium” and you will face the Shell petrol station. Cross the traffic lights straight and get into the “Neuenheimer Feld”. Follow now the instructions at (*).
The Heidelberg Forum of Molecular Catalysis 2013 is the 7th event in a series of international symposia, which take place every other year. It is again a forum for the presentation of outstanding scientific achievements – plenary lectures and posters given by leading researchers in the field of molecular catalysis - which is jointly organized by the University of Heidelberg, the Collaborative Research Center (Sonderforschungsbereich 623) “Molecular Catalysts: Structure and Functional Design” established by the German National Science Foundation within the Heidelberg Faculty of Chemistry and Earth Sciences in 2002, and by BASF SE, the sponsor of this event.

Molecular catalysis is one of the primary fields of research in the university’s chemistry department and also plays a key role in the chemical industry.

Through its involvement, BASF is promoting the collaboration of the University of Heidelberg with other research institutes throughout the world. This support also demonstrates the great importance that the company attaches to research and innovation.

The forum aims to emphasize the important role of the Rhine-Neckar region in science, thus attracting the interest of young scientists from around the world. The BASF Catalysis Award 2013, worth € 10,000, will be presented to an outstanding young researcher at the forum.

Dr. Nicolai Cramer was born in Stuttgart, Germany. From 1998 – 2003, he studied chemistry at the University of Stuttgart. He stayed at the same institution and earned his PhD degree in 2005 under the guidance of Professor Sabine Laschat. After a research stage at Osaka University, Japan, he joined the group of Professor Barry M. Trost at Stanford University as a postdoctoral fellow in 2006. From 2007 on, he worked on his habilitation at the ETH Zurich associated to the chair of Professor Erick M. Carreira and received the venia legendi in 2010. In fall 2010, he resumed his current position EPF Lausanne.

His main research program encompasses enantioselective metal-catalyzed transformations and their implementation for the synthesis of biologically active molecules. The Cramer lab works on the development of broadly applicable catalytic methods for the selective functionalization of relatively inert C-H and C-C bonds with different transition-metal complexes.