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a b s t r a c t

Several factors contribute to on-going challenges of spatial planning and urban policy in megacities,
including rapid population shifts, less organized urban areas, and a lack of data with which to monitor
urban growth and land use change. To support Mumbai’s sustainable development, this research was
conducted to examine past urban land use changes on the basis of remote sensing data collected be-
tween 1973 and 2010. An integrated Markov ChainseCellular Automata (MCeCA) urban growth model
was implemented to predict the city’s expansion for the years 2020e2030. To consider the factors
affecting urban growth, the MCeCA model was also connected to multi-criteria evaluation to generate
transition probability maps. The results of the multi-temporal change detection show that the highest
urban growth rates, 142% occurred between 1973 and 1990. In contrast, the growth rates decreased to
40% between 1990 and 2001 and decreased to 38% between 2001 and 2010. The areas most affected by
this degradation were open land and croplands. The MCeCA model predicts that this trend will continue
in the future. Compared to the reference year, 2010, increases in built-up areas of 26% by 2020 and 12% by
2030 are forecast. Strong evidence is provided for complex future urban growth, characterized by a
mixture of growth patterns. The most pronounced of these is urban expansion toward the north along
the main traffic infrastructure, linking the two currently non-affiliated main settlement ribbons. Addi-
tionally, urban infill developments are expected to emerge in the eastern areas, and these developments
are expected to increase urban pressure.

� 2013 Elsevier Ltd. All rights reserved.
Introduction

Urbanization processes are now pervasive, given that more than
half theworld’s population lives in cities. This proportionwill increase
to over 72% by 2050 (United Nations, 2012). Megacities2 (Sorensen &
Okata, 2011) continue to emerge around the globe (Van Ginkel,
2008), representing powerful engines for economic prosperity and
growth, although this growth is accompanied by environmental
degradation and loss of biodiversity (Czamanski et al., 2008). Most of
this urban growth will occur in less developed countries (Girard,
Cerreta, de Toro, & Forte, 2007; Van Ginkel, 2008) and will be partic-
ularly pronounced and more rapid than expected in India (Bhagat,
versity of Heidelberg, Berliner
221 54 4370.
(H. Shafizadeh Moghadam),

erations as megacities having

All rights reserved.
2011; Bhatta, Saraswati, & Bandyopadhyay, 2010a; Chakrabarti,
2001; Kumar, Pandey, Hoda, & Jeyaseelan, 2011), most notably in
Mumbai (Taubenböck, Wegmann, Roth, Mehl, & Dech, 2009; United
Nations, 2012).

These dynamics often result in urban sprawl, a vaguely and not
rigorously defined phenomenon (Bhatta, Saraswati, &
Bandyopadhyay, 2010b; Helbich & Leitner, 2009). The conditions
for urban sprawl mostly occur in North America (Schneider &
Woodcock, 2008) and are only partially transferable to Mumbai.
Thus, in the present study, two broad definitions are adapted.
Although Brueckner (2000) simply defines sprawl as excessive city
growth, Ewing, Pendall, and Chen (2002) distinguishes three key
dimensions: a) disperse population in low-density developments,
b) disconnected and widely separated constructions and buildings,
and c) novel developments beyond the urban core within the city
outskirts. When these urban expansions arise in an uncoordinated
manner, serious and unsustained consequences for the inhabitants
can occur (e.g., Bhatta et al., 2010a; Taubenböck et al., 2012). Resi-
dents cannot be provided with basic infrastructure (e.g., sewer
tunnels, public transportation systems), which increases congestion

Delta:1_given name
Delta:1_surname
mailto:shafeezadeh@uni-heidelberg.de
mailto:helbich@uni-heidelberg.de
www.sciencedirect.com/science/journal/01436228
http://www.elsevier.com/locate/apgeog
http://dx.doi.org/10.1016/j.apgeog.2013.01.009
http://dx.doi.org/10.1016/j.apgeog.2013.01.009
http://dx.doi.org/10.1016/j.apgeog.2013.01.009


H. Shafizadeh Moghadam, M. Helbich / Applied Geography 40 (2013) 140e149 141
and the strain on sanitation services. These problems can in turn
affect crime rates and socioeconomic disparities and can have a
variety of other effects.

Policy makers in megacities face unprecedented challenges
with regard to governing, urban planning, and land use man-
agement because of the prevailing high dynamic growth.
Therefore, knowledge concerning past, current, and future
growth plays an important role in the decision-making process
(Patino & Duque, 2013; Schneider & Woodcock, 2008). Moni-
toring growth helps to develop an understanding of past trends
and growth patterns, while simulation-based modeling can
provide insights into possible future developments. Both com-
plementary approaches are necessary strategies for implement-
ing appropriate actions, including a) formulating better land use
policies (e.g., growth boundaries), b) meeting transportation and
utility demand, c) providing infrastructure, d) identifying future
development pressure points, and e) developing ex-ante visions
of urbanization process implications, among others. The long-
term effects of these actions may support sustainable develop-
ment aimed at optimizing available resources and decision
making (Burgess & Jenks, 2007; Taubenböck et al., 2012).

An essential prerequisite for better land use planning is infor-
mation on existing land use patterns and changes over time
(Bagan & Yamagata, 2012; Koomen, Stillwell, Bakema, & Scholten,
2007). Significant contributions in this field have been made
thanks to the advancement of geographic information systems
(GIS) and remote sensing (Bhatta et al., 2010b; Patino & Duque,
2013), both of which have been used to relate land use and
cover change (Overmars & Verburg, 2006) to urban growth
models (e.g., Mahiny & Clarke, 2012; Estoque & Murayama, 2012;
He et al., 2013; Jokar Arsanjani, Helbich, Kainz, & Darvishi, 2013).
Earth observation data are valuable for long-term monitoring of
megacity expansion, especially mid-resolution imagery data,
which are area-wide and are available independent of the study
area (Patino & Duque, 2013). Several studies that have analyzed
urban growth processes in megacities have been limited to
retrospective analysis (e.g., Bagan & Yamagata, 2012; Basawaraja,
Chari, Mise, & Chetti, 2011; Bhatta, 2009; Pathan et al., 1993;
Schneider & Woodcock, 2008; Taubenböck et al., 2009;
Taubenböck et al., 2012). However, apart from mapping the status
quo, predictive models are also empirically significant because
they assess spatial change consequences (Jokar Arsanjani et al.,
2013). Accordingly, several statistical and geospatial models
have been advanced, including logistic regression models (Hu &
Lo, 2007), Markov chains (MC; Kamusoko, Aniya, Adi, &
Manjoro, 2009), cellular automata (CA; Han, Hayashi, Cao, &
Imura, 2009), and MCeCA models (Vaz, Nijkamp, Painho, &
Caetano, 2012), among others.

Comparing these approaches, Jokar Arsanjani et al. (2013)
emphasized that spatial autocorrelation can bias estimates from
aspatial regression models (Helbich, Brunauer, Hagenauer, &
Leitner, 2012). Moreover, as noted by Hu and Lo (2007), this
type of model is less suitable for quantification of change and
temporal analysis. In contrast, MCs are spatially non-explicit
because they compute the probabilities of land use transitions
and the amount of change (López et al., 2001). This clearly con-
tradicts the idea of the inherent genesis of urban growth being a
spatial phenomenon. MC models are scarcely applied in empirical
studies because of this limitation (see Jokar Arsanjani, Kainz, &
Mousivand, 2011). Spatial CA models avoid this limitation of MC
(Han et al., 2009; Jokar Arsanjani et al., 2013). Based on predefined
site-specific rules mimicking land use transitions, CAs represent
local raster-based simulation for modeling urban expansion for
discrete time steps (Guan et al., 2011). Despite these appealing
properties, CA models lack the ability to account for the actual
amount of change. Therefore, coupling the MC and CA approaches
(Eastman, 2009) provides a powerful modeling framework in
which the shortcomings of each are eliminated. MC quantifies
future changes based on past changes, thereby serving as a
constraint for CA, which addresses spatial allocation and the
location of change (Jokar Arsanjani et al., 2013). Compared to
regression analysis, MCeCA models do not rely on comprehensive
historic time-series census data, which are often scarce in devel-
oping countries. Although Kamusko et al. (2009) and Guan et al.
(2011) have reported promising results, most studies have failed
to link MCeCA with additional driving forces (e.g., distance-based
relationships; see He et al., 2013) that can be integrated as tran-
sition potential maps using multi-criteria evaluation (MCE) tech-
niques (Eastman, 2009).

In this brief review, we have emphasized that a strong need
exists to investigate spatiotemporal urban growth dynamics in
developing countries such as India by means of geospatial simu-
lation models to help governments prepare for the explosion of
urban living. Developing countries cannot be expected to replicate
the growth trends of developed countries (Van Ginkel, 2008).
Consequently, empirical research dedicated to these dynamic ur-
ban landscapes is of paramount significance to ensure sustainable
development. The present study was conducted to investigate the
previous land use change and future patterns of urban growth of
Mumbai, one of the largest and fastest-growing megacities in the
world (United Nations, 2012). This study merged prospective ana-
lyses of the period from 1973 to 2010 and predictive modeling for
2020 and 2030 using MCeCA, along with transition probability
maps taken into account by MCE. The following research questions
were addressed:

� Which land use categories are most affected by urban expan-
sion? How can the past urban growth process of Mumbai be
characterized?

� What growth patterns can be expected within the next two
decades from 2010 to 2030? Will the amount of land trans-
formation and conversion that has occurred in the past
continue in the future? If so, to what magnitude?
Materials

Study area

Mumbai is located between 18� 530 and 19� 160 N and between
72� and 72� 590 E in western India (Fig. 1). The total urban area is
approximately 465 km2, with a maximum eastewest extent of
17 km and amaximum northesouth extent of 42 km. It is one of the
most vibrant cities in India, as well as the main city of the western
state of Maharashtra. The availability of infrastructure supported by
the government and local authorities has facilitated its economic
prosperity, making Mumbai a leading economic and financial
center in the process (Bhagat, 2011; World Bank, 2009). This eco-
nomic prosperity has also been responsible for its urban growth
(Bhatta, 2009). The abundance of different types of transportation
options (e.g., the national four-lane Golden Quadrilateral road), and
ample electricity, and water supplies have further supported this
economic growth.

According to the Indian Census of 2011, Mumbai’s population
has nearly doubled in the last four decades: since 1971, the popu-
lation has steadily increased from approximately 5,971,000 tomore
than 12,478,000 in 2011. With the highest population growth in
India, Mumbai currently ranks as the seventh-largest urban
agglomeration in the world. The United Nations (2012) has fore-
casted that this trend will continue, with the population reaching



Fig. 1. Location and land cover (true color image) of Mumbai for the year 2010. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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nearly 27 million by 2025, making Mumbai the fourth-largest ur-
ban agglomeration in the world.

Data and data preparation

Table 1 lists the datasets that were collected for use in the cur-
rent study. Landsat satellite imagery was particularly helpful in
providing efficient support for area-wide megacity analysis. Both
Taubenböck et al. (2012) and Patino and Duque (2013) allude to the
fact that Landsat data are cost-effective and maximize the possible
temporal monitoring period by keeping the processing time
feasible, through their mid-spatial resolution. In addition, Landsat
images are frequently updated and are available free of charge
through the Global Land Cover Facility repository. This availability
makes them ideal for urban growth models. The following Landsat
time stamps were gathered for spatiotemporal mapping: 1973,
1990, 2001, and 2010. Given that these remotely sensed images
were surveyed by different types of Landsat sensors (i.e., MSS to
ETMþ), a projection to UTM Zone 43 North, as well as resampling to
a common spatial resolution of 30 m, was necessary (the MSS



Table 1
Data sources and types.

Dataset Source Date Resolution

Landsat images
(MSS for 1973,
TM for 1990,
ETM for 2001,
and ETM þ for 2010)

U.S. Geological Survey
German Aerospace
Centre

1973, 1990
2001, 2010

30/79 m

Population data United Nations
Census of India

1971, 1981
2001, 2011

n.a.

Digital elevation model ASTER (NASA) 2009 30 m
Transportation network OpenStreetMap 2011 vector
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sensor has a resolution of 79 m), resulting in a homogeneous time
series.

As outlined above, developing countries are faced with data
availability problems. This is particularly true for historic time se-
ries of socio-economic attributes on a detailed scale. Consequently,
this study was limited to population information that serves as
auxiliary data. Furthermore, main traffic axes were extracted from
the OpenStreetMap (OSM) database donated by Automotive Navi-
gation Data. Basic GIS algorithms were applied to derive slopes and
Euclidean distances to water bodies, wetlands, roads, and built-up
areas, which were needed to derive subsequent transition proba-
bility maps with MCE.

Methodology

In this section, themain components of the urban growthmodel
applied toMumbai are described. Fig. 2 illustrates anoverviewof the
workflow,which comprised the following stages: a) Classification of
satellite images and b) computation of transition probability maps
on the basis of auxiliary data, based on MCE. These maps, in com-
bination with the land use maps, were required for the MCeCA
simulationmodel to predict future urban growth for 2020 and 2030.

Extraction of land use maps

Spatiotemporal mapping includes quantitative time series
analysis and transformation of land cover classes. Because land use
maps are a fundamental prerequisite for modeling future growth,
individual land use classes were extracted from the remotely
Fig. 2. Workflow for the MCeCA model.
sensed images for each timestamp. After geometric corrections, the
land use maps were initially classified based on the maximum
likelihood algorithm (Feizizadeh & Helali, 2010). Of prime impor-
tance in this study were the footprints of built-up areas, subsuming
residential, commercial and industrial buildings, and trans-
portation, among other factors.

Urban growth model

MCeCA integrates both MC and CA models. The former de-
termines the actual amount of change between land use categories
non-spatially. According to López et al. (2001), Markov chains are
stochastic process models that describe the likelihood that one
state (e.g., cropland) changes to another state (e.g., built-up areas)
within a given time period. The resulting probabilities were sum-
marized in a transition probability matrix, not directly transferable
to spatial representations.

In contrast, CA is a frequently used spatially explicit model (e.g.,
Han et al., 2009). As a rule-based model, its topological grid char-
acteristics make CA an appropriate model for incorporating spatial
interactions between a cell and its neighborhood. These spatial
interactions treat temporal dynamics in discrete time steps (Jokar
Arsanjani et al., 2013). For example, assuming a 3 � 3 cell neigh-
borhood, a cell’s state is influenced by its eight adjacent cells. The
model is constructed using a “bottom-up” approach inwhich global
structures evolve from local interactions between cells by inde-
pendently varying their states, based on transition rules (Batty,
2005). These models are typically calibrated using training data
(i.e., past land use maps), which are then compared with an actual
land use map, although the quantity of change is neglected. If
statistical evaluation, using the kappa index (Pontius, Huffaker, &
Denman, 2004), for example, provides valid results, the calibrated
model can be applied to the prediction of future urban spatial
patterns (Eastman, 2009).

Despite the limitations of the two types of models, the inte-
gration of the two in a so-called MCeCA approach (Eastman, 2009)
is empirically sound. CA addresses the spatial allocation and loca-
tion of change, while MC predicts changes quantitatively, based on
the changes that have occurred in the past, after which the values
that it predicts are used as inputs to the CA model (White &
Engelen, 1997). Previous research by Guan et al. (2011), Jokar
Arsanjani et al. (2013), and Vaz et al. (2012), among others, af-
firms that this technique efficiently simulates urban growth. Guan
et al. (2011) also linked the MCeCA model to the analytical hier-
archy process (AHP; Saaty, 1990), which allows weighting of land
use transition potential on the basis of a set of potential maps (e.g.,
magnitude of slope), and incorporates growth constraints. The
potential maps are typically expressed as fuzzy sets. Based on
standardization functions (e.g., a sigmoid function), the values are
scaled to a range of 0e1, where 0 represents the least suitable sites
and 1 represents themost suitable sites. Eastman (2009) stated that
fuzzy sets (Zadeh, 1965) establish a standardized measure and
avoid the selection of priori unknown Boolean constraints or cut-off
values. Helbich and Leitner (2009) extended this argument and
claimed that fuzzy sets were particularly useful when the under-
lying urban theory is imperfect. AHP, as part of MCE, determines the
weights of the (fuzzy) potential maps by means of pairwise as-
sessments (Malczewski, 1999). To access weighting parameters,
expert knowledge or qualitative interviews are commonly con-
ducted (see, e.g., Estoque & Murayama, 2012). The meaningfulness
and consistency of the weightings must be verified by means of the
consistency ratio (Guan et al., 2011). AHP is most helpful when
single aspects are complicated to quantify, and the relative
importance of each component depends on the others
(Malczewski, 1999). Thus, this process allows for narrowing of the



Fig. 3. Time series of land use maps for 1973e2010.

Table 2
Absolute quantities for each land use class (in ha) for 1973e2010.

Built-up areas Water
bodies

Wetlands Forest
& green space

Open land
& cropland

1973 7629 8046 11,992 16,460 43,404
1990 18,455 8271 9734 11,418 39,682
2001 25,498 7805 9086 11,057 34,124
2010 35,607 7100 8187 10,329 26,353
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resulting transition probabilities to more precisely reflect the
characteristics of the local environment.

Results and discussion

Spatiotemporal mapping of land use changes

The classification process resulted in four land use maps that
discriminated among the following five land use categories: built-
up areas, open land and cropland, forest and green space, wet-
lands, and water bodies. Additionally, the classifications were
manually improved in a post-processing step. For evaluation of the
classification results, a random sample of 250 well-distributed
points was extracted before being visually verified with Google
Earth, OSM, and official reference maps. Subsequently, statistical
confirmation was obtained through the kappa coefficient. The co-
efficient values ranged from 0.84 to 0.86, thus indicating the suit-
ability of the classified remote sensing images. Similarly, Bhatta



Fig. 4. Temporal changes of land use classes (in %).

Table 3
Population and urban growth for 1971e2011.

Year Population Periods Population growth Year Built-up areas (in ha) Periods Urban growth rate

1971 5,970,575 Base year 1973 7629 Base year
1981 8,243,405 1971e1981 38.1% n.a. n.a. n.a. n.a.
1991 9,925,891 1981e1991 20.4% 1990 18,455 1973e1990 142.0%
2001 11,914,398 1991e2001 20.0% 2001 25,498 1990e2001 39.8%
2011 12,478,447 2001e2011 4.7% 2010 35,607 2001e2010 37.9%

Table 4
Extracted weights based on AHP and fuzzy standardization.

Factors Functions Control points Weights

Distance
from roads

J-shaped 0e50 m highest suitability
50 me1 km decreasing suitability
>1 km no suitability

0.262

Distance from
water bod./wetl.

Linear 0e50 m no suitability
50 me12 km increasing suitability
>12 km highest suitability

0.187

Distance from
built-up areas

Linear 0 m highest suitability
0 me6.5 km decreasing suitability
>6.5 km no suitability

0.332

Slope Sigmoid 0% highest suitability
0e15% decreasing suitability
>15% no suitability

0.091

Land use
categories

n.a. n.a. 0.128

Table 5
Markov transition probabilities for the periods 1990e2001 and 2001e2010.

Built-up areas Water bodie

1990e2001 Built-up areas 0.980 0.002
Water bodies 0.034 0.954
Wetlands 0.046 0.003
Forest and green space 0.020 0.001
Cropland and open land 0.112 0.001

2001e2010 Built-up areas 0.990 0.002
Water bodies 0.061 0.930
Wetlands 0.088 0.003
Forest and green space 0.061 0.001
Cropland and open land 0.252 0.001
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et al. (2010a) reported a slightly lower accuracy (71e83%). The
extracted land use maps for 1973 to 2010 are illustrated in Fig. 3.

Multi-temporal change analysis of urban areas permits the
quantification of growth over time. Overlaying the spatial foot-
prints of two time stamps also permits the localization of urban
expansion (Taubenböck et al., 2012). The visual interpretation of
Fig. 3, in combination with Table 2 and Fig. 4, provides an overview
of past development trends.

Several trends related to land use changes are apparent. Since
1973, a remarkable increase in built-up areas in both size and
extent has occurred, while cropland and open spaces have
decreased. Growth has occurred mostly in the northern and
western areas surrounding the city, with both urban spread and
density increasing. Spatially built-up areas have mostly expanded
toward the surrounding areas along the main transportation axes.
Although water bodies have exhibited some fluctuation over time
(8e9%), green lands, wetlands, and open land and cropland have
steadily decreased. Most notably, open land and cropland use
decreased from 50% in 1973 to 30% in 2010, which, in comparison to
s Wetlands Forest and green space Cropland and open land

0.001 0.010 0.007
0.010 0.002 0.000
0.945 0.002 0.004
0.002 0.974 0.003
0.001 0.002 0.884
0.001 0.005 0.002
0.008 0.001 0.000
0.899 0.001 0.009
0.003 0.926 0.009
0.001 0.003 0.743
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all other land use categories, are the largest amounts of degradation
observed.

The analysis of the urbanization process in megacities con-
ducted by Basawaraja et al. (2011) and Bagan and Yamagata (2012)
demonstrated that urban growth is directly linked to population
changes. Table 3 compares the absolute and relative population
change with urban growth for the selected time stamps.

During approximately the same time period, built-up areas
increased by 367%, and the population increased by 109% from
1971 to 2010. Thus, a relationship exists between increasing
population, demand for land, and the resulting increase in built-up
Fig. 5. Simulated urban extent of Mum
areas. Note that in 2001, a 20% increase in population corre-
sponded to an approximate 39.8% increase in built-up areas,
whereas in 2011, this ratio changed dramatically (4.7% versus
37.9%). Over time, the proportion between population growth and
land consumption changed considerably: in 2011, reduced popu-
lation growth rates demanded many more built-up areas. This
ratio difference is consistent with the claims of Chakrabarti (2001)
that population growth and migration are key factors in turning
Mumbai outward. To conduct a more holistic analysis, the city’s
growth was simulated using MCeCA, as described in the next
section.
bai for the years 2020 and 2030.
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Simulating urban growth

Standardization and weighting of main factors
To evaluate the factors that shape urban expansion and effect

land use transition probabilities, auxiliary variables, selected on the
basis of preliminary studies (e.g., He et al., 2013; Jokar Arsanjani
et al., 2013), were employed within an AHP framework. The rela-
tive importance of each criterion was determined by expert
knowledge and on the basis of the published literature (e.g., Araya
& Cabral, 2010). To verify the logical consistency of the selected
weights, the consistency ratio was calculated. The value of 0.04,
which is below the critical value of 0.1, confirmed the suitability of
the defined weighting schema (Malczewski, 1999). The individual
weights determined are listed in Table 4. Factors with higher
weights are statistically more important.

Next, in agreement with Araya and Cabral (2010), the following
three fuzzy standardization functions were used (Table 4): sigmoid,
J-shaped, and linear functions with adjustable settings. For example,
areas within 50 m of roads were considered most suitable. After this
control point, suitability decreases up to 1 km, in accordance with
the J-shapedmembership function, but never reaches zero. Beyond a
distance of 50 m from water bodies, which serves as a protective
buffer, the degree of suitability increases with distance. We assumed
that a linear increasing function would characterize this relation
more robustly, compared to built-up areas, for which a linear
decreasing function was applied to assess their effects on future
changes. Agglomeration factors in urban economics (McDonald,
1997) show that future urban areas tend to be located closer to
existing built-up sites. This is portrayed in the sustainabilitymap as a
linear decreasing function. In contrast, urban expansion occurs more
often in flat areas than in hilly areas. Thus, we assume that areaswith
slopes less than 15% exhibit potential for urban growth, while
beyond this threshold, sites are characterized unsuitable. This
growth is modeled as a sigmoidal decreasing function in which
suitability starts at zero and levels off at 15%. Finally, it must be noted
that choosing the type of fuzzy membership function and corre-
sponding control points is prone to subjectivity and could be biased
by, for example, the researchers’ knowledge. However, sensitivity
analysis conducted by slightly varying the selected parameters
showed no contradictory results. These potential change maps were
considered in the MCeCA model described next.

Predicting future urban expansion
Based on land use conditions during the periods 1990e2001 and

2001e2010, transition potentials were computed using a
Markovian process. The transition probability matrices of each land
use type for both periods are given in Table 5. The diagonal ele-
ments represent probability values for self-replacement, referring
to land use types that remain similar (Guan et al., 2011). In contrast,
off-diagonal values indicate the probability of change from one land
use category to another.

The results indicate that for 1990e2001 and 2001e2010, the
built-up areas remained constant, whereas other land use classes
were likely to turn into built-up areas. Table 5 shows that for both
periods, cropland and open land possessed the highest likelihood of
transforming into built-up areas. The likelihoodwas even greater in
2001e2010, a period during which the increased possibility of
forest, green spaces, and wetlands changing to build-up areas
precipitated more pressure on these areas. In general, all land use
categories show a tendency to change into built-up areas, wherein
the loss ranges between 1 and 25%.

Although probabilities of land use transition are provided on a
per category basis, spatial distribution of occurrences within each
land use class was lacking in the analysis. Hence, this intrinsic
limitation of MC requires the integration of CA. For calibration
purposes, CA first input the transition probabilities for the years
1990e2001 and the suitability map to project the previously
known built-up areas for 2010. Following the example of Vaz et al.
(2012), the CA allocated the cells by means of a 5� 5 neighborhood
matrix and one iteration per year. Careful model validation was
conducted to assure accuracy and to ensure an applicable simula-
tion that predicts effectively. Built-up areas were predicted for 2010
based on data from 1990 to 2001 and cross-compared with the
actual amount of built-up areas. The kappa index of 83% shows an
“almost perfect” agreement (Landis & Koch, 1977, p. 165) and con-
firms the accuracy of the model. Moreover, a descriptive summary
statistic of the simulated built-up sites resulted in an area of
331 km2, compared to the actual area of 355 km2. Thus, the model
slightly underpredicted the extent of built-up areas. Both accuracy
assessments confirmed a high coincidence, which indicated that
the chosen model parameters were suitable for forecasting.
Accordingly, the model was refitted with similar parameter settings
using the land use data from 2001 to 2010, the transition proba-
bilities from 2001 to 2010, and the identical suitability map. The
future patterns of urban expansion were then simulated for the
years 2020 and 2030 (Fig. 5).

Finally, the spatial arrangement of the simulated built-up areas
for 2020 and 2030 were tested by means of point pattern analyses
(see Helbich, 2012). Quadrat count tests, using different quadrat
sizes ranging from 500 to 5000 m, and spatial KolmogoroveSmir-
nov tests (Diggle, 2003) are computed. Both tests assess the sig-
nificance of spatial patterns, compared with the null hypothesis of
complete spatial randomness of predicted build-up areas. With
p < 0.001, neither the quadrat count nor the KolmogoroveSmirnov
test confirmed a spatially random distribution, which unequivo-
cally suggests a significant clustered pattern of future built-up
areas.

Conclusions

The urban agglomeration of Mumbai is one of the largest and
fastest-growing urban regions in the world, and this growth has
unprecedented effects on urban sprawl and population dynamics
(Chakrabarti, 2001; United Nations, 2012). However, as yet, no
research has explicitly addressed the simulation of future urban
growth patterns of Mumbai. Given the prevailing high dynamism,
spatiotemporal mapping conducted by Bhatta (2010a), Taubenböck
et al. (2009, 2012), among others, requires tight coupling of remote
sensing and urban growthmodeling. Indeed, this is crucial if we are
to develop a holistic understanding of booming and vital spatial
developments in Mumbai. This approach ensures realistic and
sustainable planning. In this context, our analysis contributes
significantly to the literature by having demonstrated that urban
growth models, by means of MCeCA, generate crucial information
regarding urban futures in 2020 and 2030.

On a regional scale, the results show clear urban expansion and
demonstrate that urban growth dynamics are strongly linked to
population dynamics. The increase in urbanization is proportional
to the generation of new infrastructure aimed at supporting pop-
ulation increases, which in turn causes additional fragmentation.
Thus, the population plays an essential role in urban processes for
Mumbai, a notion which is consistent with Bagan and Yamagata’s
(2012) megacity analysis of Tokyo, Japan. Moreover, strong evi-
dence suggests that urban expansion will continue to occur in
Mumbai throughout the next two decades. The temporal mapping
of built-up areas and the simulations for the next two decades
indicate that the projected urban expansion will coincide with the
transportation networks and existing built-up areas, among other
physical factors. The main swap in land use has occurred between
built-up areas and open land and croplands, mainly because of a)



H. Shafizadeh Moghadam, M. Helbich / Applied Geography 40 (2013) 140e149148
the increasing economic value of these lands, b) the relative loca-
tion of these lands nearby existing built-up boundaries, and c) the
lack of regulatory protection that takes into account environmental
considerations for areas such as wetlands and pastures.

Consistent with Taubenböck et al. (2012), complex local growth
patterns were detected for the period between 1973 and 2010.
More important, the MCeCA model predicted that this trend will
continue through 2030, resulting in a mixture of different growth
patterns. Apart from distinct axial developments driving urbani-
zation along the main traffic routes through the surrounding
northeastern and northwestern areas, this research shows that new
urban nuclei will emerge in the next two decades and will be
significantly clustered in space. This analysis supports predictions
by Taubenböck et al. (2012), who anticipated the emergence of
satellite towns. Our model also forecasts that between now and
2020, the independent settlement axes will merge and close the
settlement ribbon around the Sanjay Gandhi National Park. More-
over, several notable smaller in-fill developments are predicted,
most likely as a result of the limited amount of space within
existing former built-up areas.

Our analysis demonstrates that the integration of GIS, remote
sensing, and urban modeling offers an enhanced understanding of
the futures and trends that megacities will face. It also provides
important information for strategies directed at fostering sustain-
able regions. Future extensions of this research will be dedicated to
the evaluation of different planning scenarios and policies on land
use dynamics (e.g., He et al., 2013) and intensity analysis (e.g.,
Huang, Pontius, Li, & Thang, 2012). Moreover, to clarify whether the
predicted urban growth patterns are specific to Mumbai, this
approach must be empirically replicated and requires further
comparative studies. In sum, these notable relevant findings should
advise policy makers, urban planning, and land use management
organizations. This will help them in preparation for the expansion
of urban living and inform them of the extent of growth that can be
expected, so that they can plan sustainable policy interventions
(e.g., encouraging infill, imposing zoning regulations, establishing
growth boundaries/limits) in the management of inevitable ur-
banization processes.
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