

3D Micro-Mapping

Crowdsourcing to Support Image and 3D Point Cloud Analysis

Prof. Dr. Bernhard Höfle

L. Winiwarter, K. Anders, B. Herfort

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Mapping of 3D geoinformation

within a few **seconds** using a simple **web browser** feasible for **non-experts**

Micro-Mapping: My definition

- "Micro" refers to <u>quick and easy</u> single mapping task that can be solved in a <u>few seconds</u>
- Perception tasks that complex for computers but easy for human interpreters

– e.g. complex objects (high inner-class variation)

- Context and local knowledge can be incorporated
- Makes use of visual interpretation strengths and high data redundancy

Dimensions of crowdsourcing

INTEGRATED VIEWS

- Design of tasks
- Training material
- Quality assessment

...

3D Micro-Mapping: Principle concepts

Refs: Griesbaum et al. (2017), Herfort et al. (2018)

Structure and challenges of 3D Micro-Mapping

Refs: Barrington et al. (2011)

ER.

Structure and challenges of 3D Micro-Mapping

ER.

Minimal technical system

Research Studies

Selected research examples

Crown Base Estimation $3D \rightarrow 3D$

GIScience Research Group, Department of Geography, Heidelberg University, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany

Tree Localization $2D \rightarrow 3D$

Refs: Herfort et al. (2018)

Conceptual approach

- Input: Segmented ALS point clouds of trees in Vienna
- Several tasks by simple answer or user interaction
- Implementation: Web browser (Pybossa + WebGL,...)

Conceptual approach

- Input: Segmented ALS point clouds of trees in Vienna
- Several tasks by simple answer or user interaction
- Implementation: Web browser (Pybossa + WebGL,...)

Conceptual approach

- Input: Segmented ALS point clouds of trees in Vienna
- Several tasks by simple answer or user interaction
- Implementation: Web browser (Pybossa + WebGL,...)

Refs: Höfle et al. (2012), Herfort et al. (2018)

Crown base height

Users and contributions

	Tasks	Contributions	Users	Contributions/task	Tasks/user
Experiment 1	834	9,906	152	11.9	65.2
Experiment 2	460	5,580	110	12.1	50.7
Experiment 3	363	7,110	96	19.6	74.1

3DGE

Duration per task

Refs: Herfort et al. (2018)

Evaluation of crown base height

	Ν	Average difference [m]	RMSE [m]
crowdsourcing	363	0.008	0.054
computer (automatic)	324	0.058	0.147

Difference to reference correlates (R=0.46) with user agreement (std.dev.)

- Data quality dependent on task design
 - Single annotation and crown base height easier to solve
 - Multi-answer classification is difficult: no micro-task?
- User agreement as intrinsic quality indicator
- **Crown base height**: Higher accuracy and completeness than applied automatic method
- Strong visual component in task design leads to better results in 3D crowdsourcing

Selected research examples

Crown Base Estimation $3D \rightarrow 3D$

3D micro-mapping: Towards assessing the quality of crowdsourcing to support 3D point cloud analysis

Benjamin Herfort*, Bernhard Höfle, Carolin Klonner

GIScience Research Group, Department of Geography, Heidelberg University, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany

Tree Localization $2D \rightarrow 3D$

Refs: Herfort et al. (2018)

Design of project and single tasks

- Goal: Retrieve positions (xyz) of tree stems from UAV-LiDAR point clouds
- Reduce complexity for users
 - My kids and beloved granny should be able to do the job
- Full 3D task not possible due to forest complexity

DFG

Deutsche Forschungsgemeinschaf

Motivation

Why crowdsourcing and not with automatic methods?

- Co-registration of diverse point clouds (TLS, ULS, ALS)
- Validation / Training of automatic approaches
- Development of hybrid approaches: Crowd + Algorithm

Motivation

Why crowdsourcing and not with automatic methods?

- Co-registration of diverse point clouds (TLS, ULS, ALS)
- Validation / Training of automatic approaches
- Development of hybrid approaches: Crowd + Algorithm

Refs: Liang et al. (2018)

3DGE

Design of project and single tasks

- Development of $2D \rightarrow 3D$ tasks
 - Mapping trees in **point cloud cross-sections**
 - Complete area is covered with overlapping sections

Implementation of project

Web browser app

3DG€€€ HEIDELBERG

Live statistics

You can come back anytime

• to continue and improve your statistics!

Results

Tree position candidates All mapped trees Click on tree to view profile

Statistics

Phowo 3D Micro-Mapathon results will be released on <u>https://uni-heidelberg.de/3dgeo</u>

We expect to

- identify challenging issues for users
- evaluate different methods to aggregate user contributions in a robust way
- evaluate **data quality** (180 TLS trees)
- push forward the combination of automatic methods, simulation and crowdsourcing in an effective way
 - reduce crowdsourcing effort (cf. Herfort et al. 2019)

Value of crowdsourcing for algorithms

Current bottlenecks of computer-based methods

- Long process of algorithm development
- Missing understanding of **causality** of results
- Lack of data: Training / test / validation data etc.

Independent data & information

DFG Deutsche Forschungsgemeinschaft German Research Foundation

UNIVERSITÄT HEIDELBERG

ZUKUNFT SEIT 1386

3DG

The science is to keep it as simple and effective as possible

Let's map: https://uni-heidelberg.de/3dgeo

References

- Barrington, L., Ghosh, S., Greene, M., Har-Noy, S., Berger, J., Gill, S., Lin, A. & Huyck, C. (2012): <u>Crowdsourcing</u> <u>earthquake damage assessment using remote sensing imagery</u>. *Annals of Geophysics*. Vol. 54 (6), pp. 680-687.
- **Griesbaum, L.**, Marx, S. & Höfle, B. (2017): Direct local building inundation depth determination in 3D point clouds generated from user-generated flood images. Natural Hazards and Earth System Sciences. Vol. 17 (7), pp. 1191-1201.
- Griffiths, D. & Boehm, J. (2019): <u>A Review on Deep Learning Techniques for 3D Sensed Data Classification</u>. *Remote Sensing*. Vol. 11, 1499.
- Heipke, C. (2010): <u>Crowdsourcing geospatial data</u>. *ISPRS Journal of Photogrammetry and Remote Sensing*. Vol. 65 (6), pp. 550-557.
- Herfort, B. (2017): <u>Understanding MapSwipe: Analysing Data Quality of Crowdsourced Classifications on Human</u> <u>Settlements</u>. Master Thesis, Heidelberg University.
- Herfort, B., Höfle, B. & Klonner, C. (2018): <u>3D micro-mapping: Towards assessing the quality of crowdsourcing to</u> <u>support 3D point cloud analysis</u>. *ISPRS Journal of Photogrammetry and Remote Sensing*. Vol. 137, pp. 73-83.
- Herfort, B., Li, H., Fendrich, S., Lautenbach, S. & Zipf, A. (2019): <u>Mapping Human Settlements with Higher Accuracy and</u> <u>Less Volunteer Efforts by Combining Crowdsourcing and Deep Learning</u>. *Remote Sensing*, Vol. 11 (15), 1799.
- Höfle, B., Hollaus, M. & Hagenauer, J. (2012): <u>Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data</u>. *ISPRS Journal of Photogrammetry and Remote Sensing*. Vol. 67 (0), pp. 134-147.
- Koma, Z., Koenig, K. & Höfle, B. (2016): <u>Urban Tree Classification Using Full-Waveform Airborne Laser Scanning</u>. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. III-3, pp. 185-192.
- Liang, X., Hyyppä, J., Kaartinen, H., Lehtomäki, M., Pyörälä, J., Pfeifer, N., Holopainen, M., Brolly, G., Francesco, P., Hackenberg, J., Huang, H., Jo, H.-W., Katoh, M., Liu, L., Mokroš, M., Morel, J., Olofsson, K., Poveda-Lopez, J., Trochta, J., Wang, D., Wang, J., Xi, Z., Yang, B., Zheng, G., Kankare, V., Luoma, V., Yu, X., Chen, L., Vastaranta, M., Saarinen, N. & Wang, Y. (2018): International benchmarking of terrestrial laser scanning approaches for forest inventories. *ISPRS Journal of Photogrammetry and Remote Sensing*. Vol. 144, pp. 137-179.