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Abstract

Online and offline gaming has become a multi-billion dollar industry.
However, games of chance are prohibited or tightly regulated in many juris-
dictions. Thus, the question whether a game predominantly depends on skill
or chance has important legal and regulatory implications. In this paper, we
suggest a new empirical criterion for distinguishing games of skill from games
of chance: All players are ranked according to a “best-fit” Elo algorithm. The
wider the distribution of player ratings are in a game, the more important
is the role of skill. Most importantly, we provide a new benchmark (“50%-
chess”) that allows to decide whether games predominantly (more than 50%)
depend on chance, as this criterion is often used by courts. We apply the
method to large datasets of various two-player games (e.g. chess, poker,
backgammon, tetris). Our findings indicate that most popular online games,
including poker, are below the threshold of 50% skill and thus depend pre-
dominantly on chance. In fact, poker contains about as much skill as chess
when 3 out of 4 chess games are replaced by a coin flip.
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1 Introduction

Online and offline gaming has become a multi-billion dollar industry. According

to the Economist, the legal gambling market amounted to more than 350 billion

US dollar already in 2009 (Economist, 2010). The size of the industry justifies a

careful investigation of the regulatory and economic issues that come with it.

From a legal perspective, a key aspect regarding this industry is what distin-

guishes games of skill from games of chance. This question has important legal and

regulatory implications since in many jurisdictions games of chance are prohibited

or tightly regulated, where one of the reasons given is the possibility of problem

gambling and addiction. Furthermore, in most countries winnings from games are

treated differently for tax purposes when they were generated in games of skill

rather than in games of chance.1

So far, no convincing quantitative criterion exists that separates games of skill

from games of chance. The difficulty arises because very few games are games of

pure skill or games of pure chance. Mixed games, which involve both skill and

chance elements, are by far the most popular games. Without much guidance from

the theoretical literature, courts had to draw a line and often classify gambling as

referring to games that “predominantly depend on chance”.2

But how can one measure whether the outcome of a game depends predomi-

nantly on chance? Even if we all agree that predominantly means “more than 50

percent”, the question is, “50 percent of what?”

Poker has been the most controversial game in this topic, especially because of

its popularity. Hence, there has been an extensive debate in courtrooms as well

as scientific journals as to whether poker is a game of chance or rather a game of

1For example, in the German tax code, see §4 Nr. 9b UstG

2 31 US Code §5362 targets “unlawful internet gambling”and defines betting and wagering in

this context as “the purchase of a chance or opportunity to win a lottery or other prize (which

opportunity to win is predominantly subject to chance)”. Similarly, German law defines a game

of chance subject to “the outcome depending largely or wholly on chance”(translated by the

authors, §3 Abs. 1 GlueStV).
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skill. Not surprisingly, different researchers (and courts) have come to very different

conclusions. For example, in the US, several online poker providers were shut down

in 2011 due to a violation of the Unlawful Internet Gambling Enforcement Act of

2006 (UIGEA).3 In other jurisdictions like e.g. Austria, Israel, and Russia, poker

is categorized as a game of skill (Kelly, Dhar, and Verbiest (2007)). In Germany,

courts still refer to a decision by the Reichsgericht from 1906 that considered poker

as a game of chance, while more recent courts considered the popular German card

game “Skat” a game of skill.

In this paper we propose a new method for measuring the skill and chance

components of games and apply it to poker, chess, backgammon, and several other

popular games. The main objective of our measure is that it should provide a

clear 50%-benchmark for the predominance of chance versus skill. Furthermore,

it should be easily applicable to a variety of games and not be specific to one

particular type of poker, say. Our approach is empirical and we benefit from the

availability of very large data sets. Sport associations and online platforms track the

outcomes of games played both online and offline. Thus millions of observations

are available from public or commercial chess and poker data bases. We have

also access to millions of observations from one of Europe’s largest online gaming

websites, which offers a variety of very different games, ranging from card games

to crossword puzzles, from darts to football quizzes.

Our approach builds on previous research. It has long been argued and is now

widely accepted that poker cannot be a game of pure chance. The basic idea is

that in a game of pure chance (with time independent random devices like cards,

dice, or roulette wheels) the past performance of players has no predictive power for

their future performance. If past performance is found to have significant predictive

power, this is a clear sign that skill does play a role for this game. There are several

papers that take this approach and convincingly show that, for poker, skill plays

a significant role (see e.g. Croson, Fishman, and Pope (2008), Levitt and Miles

3See United States Attorney, Southern District of New York (April 15, 2011).
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(2014), and van Loon, van den Assem, and van Dolder (2015)).

Our approach differs from previous ones in two ways. First, rather than us-

ing performance measures like prize money won or finishing in the top x% in a

tournament, we apply a complete rating system for all players in our data set. In

particular, we use the Elo-system (Elo, 1978) used traditionally in chess and other

competitions (e.g. Go, table tennis, scrabble, eSports). It has the advantage that

players’ ratings are adjusted not only depending on the outcome itself, but also on

the strength of their opponents. Additionally, it is able to incorporate learning.

The rating system can be applied to all games, even those that are not played for

money. We calibrate the Elo rating system such that we get a best fit for each

game. A given difference in ratings of two players has a direct correspondence in

the winning probabilities when the two players are matched against each other.

Thus, the more heterogeneous the ratings are, the better we can predict the win-

ner of a match. The wider this distribution (measured by its standard deviation),

the more heterogeneous are the player strengths. This is why we can interpret the

standard deviation of ratings in a game as a measure of skill. Accordingly, the

standard deviation is very high in games that are known to be pure skill and have

a large heterogeneity of playing strength (e.g. chess). On the other hand, if the

outcome of a game is entirely dependent on chance, in the long run, all players will

exhibit the same strength of performance. Thus, the standard deviation of ratings

tends to zero.

The second difference to the previous literature is that we propose an explicit

50%-benchmark for skill versus luck. We do this by constructing an artificial game

that is arguably exactly half pure chance and half pure skill. For the pure skill

part we use chess as a widely accepted a game of skill with the added benefit that

there is an abundance of chess data. We construct our artificial game by randomly

replacing 50% of matches in the chess data set by coin flips. This way, we mix chess

with a game that is 100% chance and thereby construct what we call “50%-chess”.

We can now compare the standard deviations of ratings for all of our games to

3



50%-chess as a benchmark.4

Applying our method to the various datasets, we obtain a distribution of ratings

for each game. As expected, chess has the highest standard deviation. Poker, on the

other hand, has one of the narrowest distributions of all games. When we compare

the games to our 50%-chess benchmark, we find that their standard deviations are

mostly below the one from 50%-chess. Poker, backgammon, and other popular

online games are below the threshold of 50% skill and thus depend predominantly

on chance. In fact, when we reverse our procedure and ask how much chance we

have to inject into chess to make the resulting distribution similar to that of poker,

we find that poker contains about as much skill as chess when 3 out of 4 chess

games are replaced by a coin flip.

There are a number of earlier approaches in the literature that mostly are

concerned with poker. While most conclude that skill has a significant effect in

poker, they do generally not quantify this effect. However, an interesting approach

is to compare poker to sports or financial markets. Croson, Fishman, and Pope

(2008) compare data from poker to data from golf and find that past performances

have about the same predictive power in both games. Levitt and Miles (2014)

calculate the return on investment of top players in the World Series of Poker and

conclude that these are comparable to or even higher than returns in financial

markets (concluding that either both are games of skill or none).

Several studies try to define certain player or strategy types and compare their

performance in simulations or experiments. Borm and van der Genugten (2001),

Dreef, Borm, and van der Genugten (2003, 2004a,b), and van der Genugten and

Borm (2016) propose measures that compare the performances of different types of

players. In order to calculate which part of the difference in performance may be

attributed to skill and which to chance, they include as a benchmark an informed

hypothetical player who knows exactly which cards will be drawn. The use of their

4One may argue that chess outcomes are still somewhat random and therefore it might not be

the perfect reference point for pure skill. However, in this case our approach would still supply a

lower bound for the 50% threshold.
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approach is, however, limited to simplified versions of poker. Nevertheless, even

for simple poker variants, the different studies report a substantial degree of skill.

Larkey, Kadane, Austin, and Zamir (1997) and Cabot and Hannum (2005)

conduct simulation studies with different strategy types and find that more so-

phisticated strategies perform better. DeDonno and Detterman (2008) give one

group of subjects some instruction on how to play better poker and observe that

this group outperforms the control group. Siler (2010) shows that performance in

online poker is related to playing style (aggressive, tight etc.), and that differences

in style and performance between players decrease as stakes increase.

Finally, if a game has a skill component, in the long run by the law of large

numbers better players will outperform weaker players. Thus, one way of measuring

the skill component is to calculate how long it takes for a better player to be ahead

of a weaker player with a certain probability. Fiedler and Rock (2009) propose

a “critical repetition frequency” and find that it takes about 750 hands of online

poker in their data for skill to dominate chance. Similarly, van Loon, van den

Assem, and van Dolder (2015) use simulations to calculate the minimum number

of hands for a player who ranks in the top 1% to outperform a player who ranks

in the worst 1% with a probability p > 0.75. They find that the threshold is about

1500 hands. Our preferred measure can also to be expressed in terms of frequency

of play and we report the according numbers below.

The rest of the paper is organized as follows. In section 2 we explain our new

approach for measuring skill and chance in detail. Section 3 describes our data and

in Section 4 we present the empirical results. Section 5 concludes.

2 A new approach for measuring skill and chance

The basic idea of our approach is not new and was used by a number of authors

(see e.g. Croson, Fishman, and Pope (2008), Levitt and Miles (2014)). It is an

empirical approach that involves checking whether the past performance of players

can predict their future success. In a game of pure chance, the past has no predictive
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power for the future (if the random draws are time independent). If a particular

player was successful in roulette, this does not imply that they will be successful

in the future. In a game of skill, this is obviously different. As our measure of

past success, we use the ELO rating (Elo, 1978). It is well-established and can be

applied to all games, even if no money is involved.5

Thus, the first step in our procedure is to rate all players in all games according

to a simple Elo rating formula. This formula has one parameter that needs to be

calibrated for each game. In subsection 2.1 we explain in detail how this is done.

Once all players are rated, we can look at the distribution of player ratings for a

given game. The wider this distribution (measured by its standard deviation), the

more heterogeneous are the player strengths. Elo rating differences of players cor-

respond to their predicted winning probabilities via a logistic function.6 Therefore,

the heterogeneity of ratings is correlated to the predictability of outcomes and is a

proxy for the amount of skill involved. In a game of pure chance, the theoretical

standard deviation of ratings is zero, as the past cannot predict the future.7 In a

game of pure skill like chess, the standard deviation is very high.8

The standard deviations of ratings give us an ordinal measure as it allows us

to make statements like “game A is more of a skill game than game B”. Our

aim, however, is to define a general measure of skill and chance in games that

5Many other ways to measure past success are possible, see, e.g. Croson, Fishman, and Pope

(2008) and Levitt and Miles (2014).

6Elo’s original proposal (Elo, 1978) was based on a normal distribution. Today, the United

States Chess Federation (USCF) uses a logistic function based on an extreme value distribution

(see Glickman (1995)). The Fédération Internationale des Échecs (FIDE) still assumes normal

distributions.

7Practically, it takes marginal positive values due to the skewness of stochastic outcomes, but

it approaches zero while the number of observations increases.

8Note that even in chess the outcome is not perfectly deterministic (which would correspond to

an infinite rating difference between any two matched players). In fact, deterministic outcomes,

such as determining the winner via “who is older?”, are no fun to play and are not commonly

regarded as “games”.
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allows to specify whether a game is “predominantly” a game of skill or chance,

respectively. For this purpose our innovation is to construct an artificial game

that is a convex mixture of chess and a coin flip. Chess is commonly regarded

as an archetypical game of skill. It is also widely known and very large data sets

are available, making it a good benchmark. A coin flip, on the other hand, is

an archetypical game of chance. We construct our artificial game “x%–chess” by

replacing randomly (100−x)% of matches in our chess data by a coin flip. In fact,

since chess has many draws, we allow our coin flip to have a “draw” as well. Thus,

we replace the outcomes of the chosen matches by a “draw” with probability γ,

where γ is the fraction of draws in the original chess data set, by a “win” with

probability 1
2
(1− γ) and a “loss” with probability 1

2
(1− γ).

In most cases we will use “50%-chess” as our benchmark since this is the com-

mon interpretation of “predominantly skill” used by courts and legislators around

the world.9 Thus, if the standard deviation of a given game is higher than that

of 50%-chess, we will say that the game is predominantly skill. If it is below, it is

categorized as a game of predominantly chance.

2.1 Calibrating the Elo ratings

The Elo-rating (Elo, 1978) is defined for two-player games. As data we have a finite

set of players I to be ranked, a finite number of matches T , and a finite series of

outcomes from each match t ∈ {1, ..., T} between players i and j, where i, j ∈ I.

Outcomes are denoted by Stij ∈ [0, 1] and can, for example, be a win for player i

(Stij = 1), a loss (Stij = 0), or, a draw (Stij = 0.5). In some games intermediate

outcomes may be allowed. Due to the constant-sum nature of the outcomes, it

holds that Stji = 1− Stij. We denote the set of players involved in match t ∈ T by

ρ(t).10

The rating Rt
i of player i is an empirical measure of player i’s playing strength.

9cf. footnote 2.

10In our case, this is always a pair of players.
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More specifically, player i’s chance of winning against j is related to the difference

in ratings via the expected score Et
ij ∈ (0, 1), which can also be thought of as i’s

expected payoff (e.g. when a draw is counted as 1
2
) and is given by

Et
ij :=

1

1 + 10−
Rt
i
−Rt

j
400

.

Expected scores range from zero (sure loss) to one (sure win). The parameter

400 in the logit function is an arbitrary normalization used by chess federations

which we retain for familiarity. Given this parameter, a rating difference of 100

translates into an expected score of .64.

We normalize the initial rating of each player to R0
i = 0.11 The Elo ratings of

the players who were involved in match t are updated as follows, 12

Rt+1
i = Rt

i + k · (Stij − Et
ij),

∀i, j ∈ ρ(t), j 6= i.

While the actual scores Stij are observed in our data, the expected scores, are

determined recursively and depend on k. To indicate this we use the long hand form

Et
ij(k). A crucial element of the procedure is the determination of an appropriate

value for k. This so–called k-factor determines by how much ratings are adjusted

after observing a deviation of the actual score from the expected score in each

match. Clearly, there is a trade-off between allowing for swift learning on the one

hand and reducing fluctuations of rankings due to the inevitable randomness of

outcomes in games with stochastic outcomes. In reality, the k-factor is chosen in

many different, complicated, and relatively ad hoc ways by the different sports and

chess federations.13

11Typically, chess federations use a positive initial rating. However, since only rating differences

matter, this normalization is without loss of generality.

12The ratings of players who are not involved in match t do not change, ∀i /∈ ρ(t) : Rt+1
i = Rt

i.

13For instance, the United States Chess Federation (USCF) historically used a set of fixed k-

factors, where the value for each player was chosen according to his present rating. Today, they

calculate the k-factor for each player separately depending on his rating in a quite complex way

(for details, see Glickman and Doan (2017)).
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Our approach is to calibrate the k-factor for each game in order to obtain

the best fit given our data. The goal is to predict the winning probabilities as

accurately as possible. For this purpose we minimize the following quadratic loss

function summing over all matches of all players:14

k∗ := arg min
k

1

T

∑
t∈T

i,j∈ρ(t)

(
Stij − Et

ij(k)
)2
. (1)

We derive the solution to this minimization problem numerically.15

It may be tempting to interpret a high k∗-factor as a sign of a game of skill. A

game of pure luck would produce a k-factor of essentially zero since past ratings

have no predictive power for future winning probabilities. However, there are two

reasons why the k-factor is an undesirable measure of skill. First, the learning

curve can differ from game to game. In some games, learning will be slow and

gradual. In other games, learning could be condensed into a single “epiphany”

(Dufwenberg et al., 2010). The k-factor of these different types of games is likely

to be very different although both may be games of skill. Second, the optimal k-

factor depends on the number of observations in the data. This is so because of the

above mentioned trade-off between swift learning and reducing fluctuations. Our

preferred measure, the standard deviation of ratings, does not suffer from these

drawbacks.

3 Data

In order to apply the proposed measure in practice, we acquired large datasets of

various two-player games. These include competitions of chess, poker, and various

online browser games. The size of the datasets as well the distribution of matches

among players differ and are summarized by the statistics in Table 1. For each

14Note that each match produces two error terms in (1). However, given that St
ji = 1−Sij and

Et
ji(k) = 1 − Et

ij(k), the solution to the minimization problem when considering only one error

for each match is the same.

15See Appendix for an exact description of the numerical procedure.

9



Chess Tetris Jewels Rummy Solitaire Backgammon Yahtzee Crazy eights Poker

#Players 235,110 10,872 39,058 7,851 33,860 4,279 10,079 12,557 58,806

#Regulars 18,963 139 1,899 108 3,297 179 444 302 446

#Matches 4,254,657 47,718 441,996 39,448 641,278 42,155 106,800 102,415 194,032

Mean Matches 36.2 8.8 22.6 10.0 37.9 19.7 21.2 16.3 6.6

Median Matches 11 2 5 3 6 4 4 4 1

99% Matches 411 111 281 125 448 225 305 160 79

Max Matches 2,280 514 1,649 3,026 3,277 1,301 1,378 2,945 7,531

Std. Dev. 87.7 23.0 22.6 45.5 105.8 54.9 68.7 50.5 65.1

Table 1: Statistics on players and their number of matches

game, it lists the number of players and the number of “regulars”. The latter are

those players who play at least 100 matches within our data. Furthermore, we

report the total number of matches, the mean number of matches of each player,

the number of matches of the median player as well as the 99% percentile player

and the maximum number of matches played by a single player. Eventually, we

list the standard deviation of the distribution of matches among all players.

Regarding chess, we were able to obtain a fairly comprehensive database pro-

vided by ChessBase. The observations date back to 1783 and include nearly 5

million matches in total. We restrict ourselves to a subset of the data ranging

from 2000 to 2016, excluding any rapid and blitz formats.16 The resulting subset

consists of roughly 4.25 million matches from more than 235,000 players.

The poker data consist of so-called two-player “heads-up”Sit-and-Go-tournaments

(SnG), a competition type where players pay an equal entry fee, are endowed with

an equal stack of chips, and compete until all chips are owned by one player. We

bought the data from “HH Smithy”, a commercial provider of poker hand histo-

ries. The data we measure for this project include 58,806 players who participate

in 194,032 tournaments. They took place between February 2015 and February

2017. All of these tournaments are “Texas Hold’em”competitions, which is the

most popular type of poker online. The entry fee for each amounts to $3.50.

16These types of chess have more restrictive time limits for the players and are usually separated

from “standard”chess, i.e. chess federations use separate ratings for these formats.
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In addition, we acquired data from one of Europe’s largest online gaming plat-

forms, where a variety of games can be played in a web browser for money. The

dataset includes more than 13 million matches in total, from more than 35 dif-

ferent games. We restrict the analysis to deal with games that are (more or less)

well-known, or comparable to well-known games, giving us more than 1.25 mil-

lion competitions. The number of different players for each game range from about

4,000 to 40,000. The games used are online versions of rummy, tetris, backgammon,

jewels, solitaire, yahtzee and crazy eights.17

4 Results

In our result tables we report statistical values about the calculated ELO rating

distributions. These include the minimum and maximum rating, the rating of the

1% and the 99% percentile player, and most importantly, the standard deviation of

all ratings. We sort the tables according to this value. Furthermore, we transform

the standard deviation of each game into the corresponding winning probability of

a player who is exactly one standard deviation better than his opponent. We refer

to this probability as psd. For comparison, we also provide the winning probability

of the 99% percentile player when competing with the average player, which we call

p99. The winning probability psd can be used to calculate the number of matches

necessary so that the better player “most likely”is ahead. Formally, this means that

a player who is one standard deviation better than his opponent wins more than

half of the matches with a probability larger than 75%.18 This number is reported

in the repetitions column (abbreviated “Rep.”). In Table 2, we also report the

mean rating difference of players entering a match.

Table 2 provides the results when measuring all players in our database. In-

specting their rating distributions and comparing the standard deviations of the

analyzed games, we find that most of them are substantially below the bench-

17For a detailed description of these games, see Appendix 6.1.

18This definition is used by e.g. van Loon, van den Assem, and van Dolder (2015)
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Min. Max. 1% 99%
Std.

Dev.
psd p99 Rep.

Mean

Diff.

Who is older -∞ ∞ ∞ 100.0 100.0 1 ∞

Chess -684.6 945.3 -247.6 439.7 123.4 67.0 92.6 5 112.9

Tetris -371.4 373.9 -120.4 180.8 52.4 57.5 73.9 21 72.3

50% Chess -205.9 312.6 -58.0 109.8 28.1 54.0 65.3 71 36.0

Jewels -411.1 225.0 -79.1 80.0 27.1 53.9 61.3 75 39.3

Rummy -137.3 121.7 -37.4 55.5 14.7 52.1 57.9 259 37.0

Solitaire -176.8 122.5 -40.0 48.2 14.1 52.0 56.9 285 22.2

Backgammon -120.1 130.1 -32.8 42.4 12.3 51.8 56.1 351 25.6

Yahtzee -65.3 86.3 -26.0 38.4 9.7 51.4 55.5 581 22.4

Crazy eights -106.0 185.8 -18.2 23.7 7.5 51.1 53.4 941 12.8

Poker -98.9 123.5 -12.0 19.9 6.0 50.9 52.9 1,405 30.2

Coinflip 0 0 0 0 0 50.0 50.0 ∞ 0

Table 2: Results all players

mark of 50%-chess. The online version of Tetris is the single game that exhibits a

larger heterogeneity of skill and positions itself above the threshold. Moreover, the

browsergame Jewels appears to be on a similar level as 50%-chess, as their standard

deviations differ only slightly. Poker, on the other hand, stands at the bottom of

the list. In terms of heterogeneity of skill, it seems to be inferior to the benchmark

as well as many of the online games we analyzed. Regarding winning probabilities,

a poker player who is one standard deviation better than his opponent seems to

have a 50.9% chance of winning the competition. This translates into more than

1400 repetitions that are needed for the better player to most likely be ahead of

his opponent.

For comparison, Table 3 shows our results when considering only the subset

of ratings of “regulars”. This group exclusively consists of players that have com-

peted 100 or more times. When restricting the distributions to regulars, the order

of games changes slightly. While passing several browser games (i.e. crazy eights,
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Min. Max. 1% 99%
Std.

Dev.
psd p99 Rep.

Who is older -∞ ∞ ∞ 100.0 100.0 1

Chess -684.6 945.3 -200.9 703.4 188.3 74.7 98.3 3

Tetris -225.2 306.3 -154.5 260.2 84.5 61.9 81.7 9

Jewels -411.1 225.0 -205.5 128.8 58.2 58.3 67.7 17

50% Chess -205.9 312.6 -74.1 203.1 56.4 58.0 76.3 19

Rummy -137.3 121.7 -100.0 118.3 46.5 56.7 66.4 25

Backgammon -120.1 130.1 -86.1 106.1 36.4 55.2 64.8 43

Poker -98.9 123.5 -53.3 104.3 31.0 54.4 64.6 59

Solitaire -176.8 122.5 -80.6 76.9 30.7 54.4 60.9 59

Yahtzee -65.3 86.3 -55.5 77.8 29.2 54.2 61.0 65

Crazy eights -106.0 185.8 -50.5 60.7 26.8 53.8 58.6 79

Coinflip 0 0 0 0 0 50.0 50.0 ∞

Table 3: Results regulars

yahtzee and solitaire), poker remains in the lower part of the list. It is still clearly

below the benchmark. In addition, the standard deviations of all games increase

substantially. This is a consequence of the fact that our dataset includes many

players who only compete in very few matches. Because of the updating charac-

teristic of the Elo ratings, the deviation from the initial rating is limited subject

to the number of matches a player competes in.19

The histograms in Figure 1 provide the full distributions of chess, 50%-chess

and poker. Comparing the distributions of poker to those of chess and 50%-chess,

it is apparent that the heterogeneity of ratings is much smaller for poker. The

rating distributions of regulars show a right-shift compared to those of all players.

Additionally, the increase in standard deviations is observable.

We can now also reverse our procedure and ask: how much chance do we have

19Besides that, the possible range of the final rating of a player also depends on the ratings of

his opponents.
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Figure 1: Rating distributions for chess, 50%-chess and poker for all players, as

well as restriction to regulars

to inject into chess to obtain a distribution of player ratings similar to poker. As

a result, we find that we would have to replace roughly 3 out of 4 chess games by

a coin flip in order to produce a rating distribution as the one in poker.

Result 1: Of all the games we consider only 1 or 2 produce a rating dis-

tribution that is wider than 50%-chess. In particular, poker clearly fails to pass

the 50% benchmark. Our calibration suggests that poker is roughly like 25%-chess.

Result 1 poses a puzzle. If poker is a game that depends predominantly on

chance, then why are there poker professionals? It is undisputed that there are

quite a number of professional poker players. Some are very well known from

14



TV shows and live events and may derive a substantial part of their income from

advertisements. However, there are also numerous unknown professionals who

make a living, in particular from online poker. These players continuously win

more money than they lose, at least when their results are aggregated over longer

time periods.20 On first view, this might seem to be in conflict with our findings.

However, there are two reasons why there is no contradiction. First, as we will

show below, although the influence of skill in poker may be smaller than in other

games, it is still significant. Online poker professionals often play many hours per

day and several matches in parallel. Thus, by the sheer number of games, they can

make a decent return despite being only marginally favored in each match. Second,

game selection is an important factor in poker. This is a crucial difference about

this between chess and poker. While in chess, one generally tries to find opponents

of similar, or even slightly higher strength, in poker one tries the find an opponent

who is as bad as possible (a “fish” in poker terminology). This becomes apparent

when considering the mean rating differences of players who enter a match in Table

2. For all games except poker, the magnitude of this number is between one and

two standard deviations of the rating distribution.21 Poker, on the contrary, shows

a value that corresponds to five times its standard deviation. Thus, it seems that

professional online poker players can make a living by playing many games and by

using additional information to identify weak players.22

In order to demonstrate that skill is important in the games we consider, we

present the results of regressions which were inspired by the approach taken by

20One of the authors made this experience himself when he played poker to finance his studies.

21The players of the online browser games might also have an incentive to try to pick weak

opponents, but a match-making algorithm does not allow them to choose freely. In addition,

signals of player strengths are common knowledge, which means that potentially weaker players

would be aware of entering an unfavourable competition (and can therefore avoid it).

22This information is not automatically available to every player. Statistics can be acquired

through tracking software while playing, or a priori be purchased from special vendors. Generally,

stronger players use these more often, leading to asymmetric information among players.
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Regressions all players

#Obs β1 R2-value

Chess 8,274,204 0.373*** 0.020

Tetris 84,564 0.322*** 0.024

50% Chess 8,274,204 0.252*** 0.007

Jewels 844,934 0.267*** 0.009

Rummy 71,045 0.156*** 0.005

Solitaire 1,248,696 0.158*** 0.002

Backgammon 80,031 0.124*** 0.002

Yahtzee 203,521 0.105*** 0.001

Crazy 8s 192,273 0.050*** 0.000

Poker 329,258 0.087*** 0.001

*** p < 0.001

Regressions regulars

#Obs β1 R2-value

Chess 4,581,177 0.527*** 0.016

Tetris 22,297 0.415*** 0.012

Jewels 425,091 0.402*** 0.008

50% Chess 4,581,177 0.438*** 0.007

Rummy 23,132 0.409*** 0.008

Backgammon 36,764 0.373*** 0.007

Poker 171,089 0.284*** 0.002

Solitaire 826,629 0.251*** 0.002

Yahtzee 112,256 0.285*** 0.003

Crazy 8s 61,701 0.277*** 0.003

Table 4: Coefficients and R2-values for Croson et al. regressions for all players and

regulars

Croson, Fishman, and Pope (2008). Whenever a player competes in a match and

has a history of matches played beforehand, we use his previous results to calculate

his average performance in the past. Let S̄t−1i denote the average of all past scores

of player i up to match t− 1. Then, we estimate the effect of this previous average

performance on the outcome of the current match.23

Stij = β0 + β1 · S̄t−1i + εti

Whenever β1 is significant and positive, we can conclude that skill plays a

significant role. Furthermore, comparing across games, we can interpret a larger

coefficient as a sign of more skill in a game.

We run the regressions with clustered standard errors on the player level. Table

4 shows the results for all players (left panel) as well as for regulars (right panel).

The first thing to note is that the coefficient for past average rank is highly sig-

nificant (p < 0.001) for all games we consider. As the past performance should

23The 50%-chess dataset uses a modified independent variable. The average performance in

the past is based on half real, half random performances.
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have no predictive power for future performance if the game in question is a game

of pure chance, this suggests that for all of the games considered in Table 4 skill

plays a significant role. We can thus confirm the results of earlier studies for poker,

in particular, Croson et al. (2008). Remarkably, the coefficients in Table 4 have

a very similar order as the one we obtained for our standard deviations measured

using the best-fit Elo rating. To facilitate comparison, the games in Table 4 are

presented in the same order as in Table 2.

Result 2: All games we consider (including poker) show a significant influence

of skill.

5 Conclusion

The contribution of this paper is twofold. On the theoretical side we suggest a new

way of classifying games as games of skill versus games of chance. Our preferred

measure is the standard deviation of ratings after we rated all players according

to a “best-fit” Elo rating. Most importantly, we provide a 50% benchmark that

allows us to determine whether a game depends “predominantly” on chance. This

benchmark is created by randomly replacing 50% of outcomes in our chess data set

with coin flips. On the empirical side we employ large data sets from chess, poker,

and online browser games to give our method a first practical test.

Our results clearly show that most popular two-player games in our data pre-

dominantly depend on chance in the sense that they did not pass the 50%-chess

threshold. This holds in particular for poker, which we can classify as roughly

“25%-chess”. This does by no means imply that there is no skill in poker. How-

ever, if one adopts our view that “predominantly” is supposed to mean “by more

than 50%”, and if one accepts our way of inducing a 50%-benchmark, then, as a

conclusion, poker is a game of chance.

Several points in our approach may be criticized. For example, one may argue

that chess is not a game that consists to 100% of skill. However, as far as we
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know, chess is universally accepted by courts as a game of skill. Furthermore, if

we adopted a benchmark even stronger than chess, our 50%-benchmark would also

move upwards, making our results conservative with respect to determining games

of chance. Games that we classify as games that depend predominantly on chance

when compared to 50%-chess would a fortiori be classified as such under a stricter

benchmark.

One inevitable feature of any empirical approach is that our results depend on

the population we observe. Suppose that we would observe chess matches in a

completely homogenous population, i.e. when every player has exactly the same

skill. If we applied our method to this sample, we would conclude that chess is a

game of pure chance as the distribution of ratings would be very much concentrated

at zero. Or consider a population in which players are completely “stratified”, i.e.

good players play only against good players and bad players only against bad

players. This could happen because players are matched by the platform into very

homogeneous groups (or because players choose similar opponents voluntarily). If

the good players never play against the bad players, the best of the bad players

will have a ranking comparable to the best of the best players (because they both

win most of their games). As a result, the overall ranking distribution would be

compressed. The Elo rating is capable of handling this issue if at least sometimes

some of the good players are matched against some of the bad players. Transitivity

of the Elo ranking will then detect the heterogeneity in skills, which allows it to

rank the players accurately. For this reason, any ranking method that does not

control for the strength of the opponents would underestimate the skill distribution.

The purpose of this paper is not to discuss the reasonableness of the current

regulation of gaming. We leave open whether games that “predominantly depend

on chance” should be treated differently from skill games. The legal status of gam-

ing simply serves as a starting point for our analysis. However, we conjecture that

games with a higher degree of chance elements might be more subject to problem

gambling. It seems fair to assume that few people become addicted to playing

chess for money, since repeated, predictable, losses against better players would
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be hinder the addition. In poker, on the other hand, even a fairly inexperienced

player may win a few hands or even a tournament and very good players may lose

early. Given evidence on overconfidence (see e.g. Park and Santos-Pinto (2010)),

this may lead to problem gambling.

Finally, we should point out that this paper is only a first step towards a broader

research agenda. One limitation is that it applies only to two-player games. In

future research we want to generalize the Elo rating to n-player games and conduct

an analysis similar to the current one. The current rating can also be applied to

other games or sports, if sufficient data is available.

6 Appendix

6.1 Description of browser games

We selected browser games for our analysis that do not differ significantly from

popular versions of those games. Nevertheless, some adjustments were made by the

providing website. On the one hand, they facilitate competitive matches in games

that are originally single person games, on the other hand they balance the influence

of random devices in order to allow for strategic gaming and “fairer”comparison of

competitors.

The implementations of crazy eights as well as rummy do not differ much from

the popular variants. Crazy eights (also known as “Mau-Mau”) is a shedding-type

card game with the objective to get rid of all cards. Rummy is a matching card

game. Its’ objective is to build melds and to get rid of all cards by doing so.

The two-player board game backgammon provided by the website is nearly

identical to the popular version of the game. The goal for each player is to remove

all of his playing pieces from the board.

The single player games solitaire (also known as “patience”), jewels and tetris

each are complemented with a scoring scheme in order to establish a winner. In

solitaire the players aim to sort a layout of cards. The initial setup of cards is
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identical for both players in the online variant. Jewels and tetris are tile-matching

puzzle games. While in jewels both players have to play the same patterns of gems,

in tetris the order of tetrominos is predetermined and equal for the competitors. In

all of these three games, identical strategies will lead to the exact same outcome.24

The latter also holds for the provided version of yahtzee (also known as “Knif-

fel”). It is a dice game with the objective to score by making certain combinations.

All rolls are predetermined and identical for the players.

6.2 Minimization of loss function

Here we describe the numerical procedure used to minimize the quadratic loss

function given in (1). Let

L(k) :=
1

T

∑
t∈T

i,j∈ρ(t)

(
Stij − Et

ij(k)
)2

be the value of the loss function for a given k-factor. The absolute loss by itself is

not meaningful as it depends on the number of matches. Thus we will normalize

the loss by considering the improvement relative to L(0), which is the loss when

all ratings are set to the initial value of zero. For all games we considered, the loss

value is roughly U-shaped, starting high at L(0) but increasing again after k∗. As

an example see Figure 2, which shows the loss for the game of backgammon.

To find the minimum we conduct a grid search moving to a finer and finer grid

in each iteration. We start by considering five equidistant k-values of 0, 20, 40, 60,

and 80.25 Suppose 20 produces the lowest loss among those five, then we continue

by halving the grid size taking 20 as center point, i.e., the new grid will consist of

0, 10, 20, 30, and 40.

24Nevertheless, draws are very unlikely to occur, as time also counts towards the score and

therefore an identical strategy would have to be identical in timing as well.

25We chose these initial values conservatively to guarantee that the solution to our minimization

problem is in the interior of this interval.
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Figure 2: Loss as function of k-factor for the game “Backgammon”

We stop this procedure at k∗ once we have achieved a desired degree of precision,

which we define as

[L(k+)− L(k∗)] + [L(k−)− L(k∗)]

L(0)− L(k∗)
< 10−6,

where k+ denotes the grid point above k∗ and k− the grid point below k∗ (see

Figure 3).

Table 5 shows the results of the procedure for each dataset. It includes the

optimal k-factor derived through the numerical algorithm, as well as the resulting

value of the loss function when using this k-factor.26 The value of the loss function

can be interpreted similar to the Brier score (Brier, 1950). The lower this value,

the more accurate are the predictions of outcomes. The value of 0.5 can be taken

as benchmark, as this loss would result when predicting both players to be equally

likely to win in each of the matches. In general, the accuracy of predictions seem

to be correlated to the heterogeneity of skill within a game. On the other hand,

26For the datasets of chess and 50%-chess, we additionally list the value of the loss function

when excluding draws. These values are more adequate to compare to those of the other games.
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Figure 3: Numerical procedure for the game “Backgammon”

the value also depends on the competitions that one observes. Even with perfect

approximation of playing strengths, it is necessary that players have a different level

of skill in order to generate a lower loss contribution. From Table 2, we already

know that the mean difference in ratings is considerably larger in the observed

poker matches. Consequently, the calibrated poker ratings result in a lower loss

value than some of the online games that show a larger heterogeneity of skill.

Chess Tetris 50%-chess Jewels Rummy Solitaire Backgammon Yahtzee Crazy eights Poker

k∗ 57.0 39.3 11.7 12.4 9.8 4.9 5.7 4.4 3.7 4.9

L(k∗) 0.298 0.475 0.361 0.491 0.491 0.497 0.495 0.496 0.498 0.494

L(k∗) (no draws) 0.395 0.489

Table 5: Derived k-factors and corresponding loss-function values
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