Publications

Peer-reviewed publications

Search for Kann, O. publications on pubmedlogo

1.  Papageorgiou IE, Lewen A, Galow LV, Cesetti T, Scheffel J, Regen T, Hanisch UK, Kann O.
TLR4-activated microglia require IFN-γ to induce severe neuronal dysfunction and death in situ.
Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):212-7.

2.  Schneider J, Lewen A, Ta TT, Galow LV, Isola R, Papageorgiou IE, Kann O.
A reliable model for gamma oscillations in hippocampal tissue.
J Neurosci Res. 2015 Jul;93(7):1067-78.

3.  Papageorgiou IE, Fetani AF, Lewen A, Heinemann U, Kann O.
Widespread activation of microglial cells in the hippocampus of chronic epileptic rats correlates only partially with neurodegeneration.
Brain Struct Funct. 2015 Jul;220(4):2423-39.

4.  Galow LV, Schneider J, Lewen A, Ta TT, Papageorgiou IE, Kann O.
Energy substrates that fuel fast neuronal network oscillations.
Front Neurosci. 2014 Dec 5;8:398.

5.  Huchzermeyer C, Berndt N, Holzhütter HG, Kann O.
Oxygen consumption rates during three different neuronal activity states in the hippocampal CA3 network.
J Cereb Blood Flow Metab. 2013 Feb;33(2):263-71.

6.  Kann O, Taubenberger N, Huchzermeyer C, Papageorgiou IE, Benninger F, Heinemann U, Kovács R.
Muscarinic receptor activation determines the effects of store-operated Ca(2+)-entry on excitability and energy metabolism in pyramidal neurons.
Cell Calcium. 2012 Jan;51(1):40-50.

7.  Papageorgiou IE, Gabriel S, Fetani AF, Kann O, Heinemann U.
Redistribution of astrocytic glutamine synthetase in the hippocampus of chronic epileptic rats.
Glia. 2011 Nov;59(11):1706-18.

8.  Kann O, Huchzermeyer C, Kovács R, Wirtz S, Schuelke M.
Gamma oscillations in the hippocampus require high complex I gene expression and strong functional performance of mitochondria.
Brain. 2011 Feb;134(Pt 2):345-58.

9.  Kovács R, Rabanus A, Otáhal J, Patzak A, Kardos J, Albus K, Heinemann U, Kann O.
Endogenous nitric oxide is a key promoting factor for initiation of seizure-like events in hippocampal and entorhinal cortex slices.
J Neurosci. 2009 Jul 1;29(26):8565-77.

10.  Huchzermeyer C, Albus K, Gabriel HJ, Otáhal J, Taubenberger N, Heinemann U, Kovács R, Kann O.
Gamma oscillations and spontaneous network activity in the hippocampus are highly sensitive to decreases in pO2 and concomitant changes in mitochondrial redox state.
J Neurosci. 2008 Jan 30;28(5):1153-62.

11.  Nateri AS, Raivich G, Gebhardt C, Da Costa C, Naumann H, Vreugdenhil M, Makwana M, Brandner S, Adams RH, Jefferys JG, Kann O, Behrens A.
ERK activation causes epilepsy by stimulating NMDA receptor activity.
EMBO J. 2007 Nov 28;26(23):4891-901.

12.  Kann O, Kovács R, Njunting M, Behrens CJ, Otáhal J, Lehmann TN, Gabriel S, Heinemann U.
Metabolic dysfunction during neuronal activation in the ex vivo hippocampus from chronic epileptic rats and humans.
Brain. 2005 Oct;128(Pt 10):2396-407. Epub 2005 Jun 15.

13.  Kovács R, Kardos J, Heinemann U, Kann O.
Mitochondrial calcium ion and membrane potential transients follow the pattern of epileptiform discharges in hippocampal slice cultures.
J Neurosci. 2005 Apr 27;25(17):4260-9.

14.  Hoffmann A, Kann O, Ohlemeyer C, Hanisch UK, Kettenmann H.
Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function.
J Neurosci. 2003 Jun 1;23(11):4410-9.

15.  Kann O, Schuchmann S, Buchheim K, Heinemann U.
Coupling of neuronal activity and mitochondrial metabolism as revealed by NAD(P)H fluorescence signals in organotypic hippocampal slice cultures of the rat.
Neuroscience. 2003;119(1):87-100.

Reviews

Kann O.
The interneuron energy hypothesis: Implications for brain disease.
Neurobiol Dis. 2015 Aug 16. pii: S0969-9961(15)30025-5. doi: 10.1016/j.nbd.2015.08.005. [Epub ahead of print]

Kann O, Papageorgiou IE, Draguhn A.
Highly energized inhibitory interneurons are a central element for information processing in cortical networks.
J Cereb Blood Flow Metab. 2014 Aug;34(8):1270-82.

Kann, O. (2012).
The energy demand of fast neuronal network oscillations: insights from brain slice preparations.
Front. Pharmacol. 2:90. doi: 10.3389/fphar.2011.00090.

Heinemann, U., Albus, K., and Kann, O. (2009)
Seizure models in acute and organotypic slices.
In Encyclopedia of Basic Epilepsy Research, P.A. Schwartzkroin, ed. (San Diego, CA, USA: Elsevier Academic Press), pp. 786-792.

Kann, O., and Kovács, R. (2007)
Mitochondria and neuronal activity.
Am. J. Physiol. Cell. Physiol. 292, C641-C657.

Heinemann, U., Kann, O., Remy, S., and Beck, H. (2006)
Novel mechanisms underlying drug resistance in temporal lobe epilepsy.
In Advances in Neurology, Vol. 97, Intractable Epilepsies, W.T. Blume, ed. (Philadelphia, PA, USA: Lippincott, Williams & Wilkins), pp. 85-95.

Heinemann, U., Kann, O., and Schuchmann, S. (2006)
An overview of in vitro seizure models in acute and organotypic slices.
In Models of seizures and epilepsy, A. Pitkänen, P.A. Schwartzkroin, S.L. Moshé, eds. (San Diego, CA, USA: Elsevier Academic Press), pp. 35-44.

Editor: A. Summerfield
Latest Revision: 2016-02-17
zum Seitenanfang/up