icon-symbol-logout-darkest-grey

ForschungBilder des James Webb Space Telescope: Blick in das frühe Universum

Pressemitteilung Nr. 128/2022
14. Dezember 2022

Internationales Forschungsteam unter Heidelberger Leitung entdeckt mit dem neuen Weltraumteleskop einen Galaxienhaufen in der Phase seiner Entstehung

Mit den Beobachtungen einer weit entfernten und sehr hellen Galaxie hat ein internationales Forschungsteam mithilfe des James Webb Space Telescope (JWST) einen Galaxienhaufen und zugleich eines der dichtesten bekannten Gebiete der Galaxienentstehung im frühen Universum entdeckt. Die Beobachtungen mit dem neuen Weltraumteleskop enthüllten einen Galaxien-Protohaufen, der sich im Umfeld eines Quasars bildet. Dieser noch in Entstehung begriffene Galaxienhaufen könnte Aufschluss darüber geben, wie sich die Galaxien im frühen Universum zum heute sichtbaren kosmischen Netz entwickelt haben. Geleitet wurden die Forschungsarbeiten von Dr. Dominika Wylezalek, Wissenschaftlerin am Zentrum für Astronomie der Universität Heidelberg (ZAH).

Bilder des James Webb Space Telescope: Blick in das frühe Universum

Ziel der Untersuchungen war eine Galaxie mit einem sehr aktiven und hellen Kern, der von einem extrem massereichen Schwarzen Loch im Herzen der Galaxie gespeist wird. Von einem solchen als Quasar bezeichneten Kern wird angenommen, dass er einen sogenannten galaktischen Wind auslösen kann, der Gas aus der Heimatgalaxie verdrängt. Diese Ausflüsse von Materie könnten damit die Entstehung anderer Sterne und Galaxien beeinflussen. Das internationale Forschungsteam unter der Leitung von Dr. Wylezalek hat den Quasar SDSS J165202.64+172852.3 – kurz J1652 – mit dem James Webb Space Telescope beobachtet. Er existierte bereits im sehr frühen Universum, das heißt vor etwa 11,5 Milliarden Jahren. Sein auffälliges rotes Licht wurde durch seine große Entfernung und die Ausdehnung des Universums in den Infrarotbereich verschoben. Daher eignet sich der Quasar J1652 ganz besonders für Beobachtungen mit dem für diesen Spektralbereich konzipierten James-Webb-Teleskop.

In früheren Untersuchungen konnte nachgewiesen werden, dass schnelle Gasausflüsse von dem Quasar angetrieben werden; zudem wurden Hinweise auf das Verschmelzen des Quasars mit einer Nachbargalaxie gefunden. Überraschenderweise bestätigen die Beobachtungen mit dem JWST, dass nicht nur eine einzige Galaxie, sondern mindestens drei weitere mit hoher Geschwindigkeit und sehr dicht gepackt umherwirbeln. In der Wissenschaft wird ein derartiges System auch als Galaxien-Protohaufen bezeichnet – ein Galaxienhaufen in der Phase der Entstehung. Die Objekte im direkten Umfeld des Quasars wurden im infraroten Spektralbereich analysiert. Sie deuten nach Angaben von Dr. Wylezalek darauf hin, dass J1652 Teil eines dichten Knotens der Galaxienentstehung ist. Erst die hervorragenden bildgebenden und spektroskopischen Fähigkeiten des James Webb Space Telescope erlauben diese Schlussfolgerung. „Es gibt nur wenige Galaxien-Protohaufen, die zu diesem frühen Zeitpunkt bekannt sind. Sie sind schwer zu finden und nur sehr wenige hatten seit dem Urknall Zeit, sich zu bilden. Unsere Entdeckung könnte dabei helfen, zu verstehen, wie sich Galaxien in dichten Umgebungen entwickeln“, so die Astrophysikerin. „Wir werfen einen Blick in die frühesten Entwicklungsphasen dieser Galaxien.“

Das internationale Forscherteam glaubt, eines der dichtesten bekannten Gebiete der Galaxienentstehung im frühen Universum entdeckt zu haben – aufgrund der Geschwindigkeit, mit der drei bestätigte Galaxien einander umkreisen, und der Dichte, mit der sie in die Region um den Quasar „gepackt“ sind. „Selbst ein dichter Knoten aus Dunkler Materie reicht nicht aus, um die von uns beobachteten Eigenschaften zu erklären. Wir nehmen an, dass wir eine Region sehen, in der zwei Knoten aus Dunkler Materie miteinander verschmelzen“, sagt die Wissenschaftlerin, die an der Universität Heidelberg eine Emmy-Noether-Nachwuchsgruppe an dem zum ZAH gehörenden Astronomischen Rechen-Institut leitet. Von Folgebeobachtungen erhofft sie sich Aufschluss darüber, wie solche dichten, chaotischen Galaxienhaufen entstehen und wie sie sich zum heute sichtbaren kosmischen Netz entwickelt haben. Mit ihrem Team, zu dem auch Postdoktorandin Dr. Caroline Bertemes gehört, will Dr. Wylezalek zunächst herausfinden, welchen Einfluss galaktische Winde und die von dem aktiven, supermassiven Schwarzen Loch in seinem Herzen erzeugten Quasar-Rückkopplungen auf den Protohaufen ausüben.

An den Forschungsarbeiten waren neben dem Heidelberger Team auch weitere Wissenschaftlerinnen und Wissenschaftler aus Deutschland sowie aus Frankreich, Großbritannien, Mexiko und den USA beteiligt. Die Beobachtungen mit dem James Webb Space Telescope fanden im Rahmen des sogenannten Early Release Science-Programms innerhalb der ersten fünf Monate nach Beginn des wissenschaftlichen Betriebs des JWST statt. Die Deutsche Forschungsgemeinschaft, die Daimler und Benz Stiftung und das Deutsche Zentrum für Luft- und Raumfahrt haben die Arbeiten an der Universität Heidelberg unterstützt. Die Ergebnisse wurden in der Fachzeitschrift „The Astrophysical Journal Letters“ veröffentlicht.

Originalpublikation

D. Wylezalek, A. Vayner, D. S. N. Rupke, N. L. Zakamska, S. Veilleux, Y. Ishikawa, C. Bertemes, W. Liu, J. K. Barrera-Ballesteros, H.-W. Chen, A. D. Goulding, J. E. Greene, K. N. Hainline, F. Hamann, T. Heckman, S. D. Johnson, D. Lutz, N. Lützgendorf, V. Mainieri, R. Maiolino, N. P. H. Nesvadba, P. Ogle, E. Sturm: First Results from the JWST Early Release Science Program Q3D: Turbulent Times in the Life of a z ∼ 3 Extremely Red Quasar Revealed by NIRSpec IFU, The Astrophysical Journal Letters (15 November 2022)