
How to Cross Open Spaces?
Jakob Miksch1,2, Stefan Hahmann2, Bernd Resch1, Johannes Lauer2

1Z_GIS, Department of Geoinformatics, Salzburg University, Austria
2GIScience Research Group, Department of Geography, Heidelberg University, Germany

Contact: jakob.miksch@stud.sbg.ac.at

Introduction

Finding the shortest path in open space is a well known chal-
lenge for pedestrian routing engines [1, 2]. A common solu-
tion is routing on the bounded polygon edges, which causes
in most cases an unnecessarily long route (figure 1a ). A
possible solution is to create a subgraph crossing the open
space. This research project assesses this approach and in-
vestigates its implications for routing engines.

Method

There are many algorithms for creating subgraphs [1]. Fig-
ure 1 shows some examples. They were created with JTS
Topology Suite. The dotted black line shows the shortest
route from the start to the destination while the graph is
visualized by the thin black lines.

Algorithms
Delaunay, Voronoi and Visibility All take all nodes of the
polygon into account. In contrast, Visibility GCP uses just
points which are connected to other parts of the graph
(Graph Connection Points). Spider is an extension of Grid
with additional diagonals [2]. Table 1 shows that the stan-
dard route is 29% longer than the direct route with the
Visibility All algorithm.

(a) Standard (b) Voronoi (c) Delaunay

(d) Grid 5 meter (e) Grid 10 meter (f) Visibility GCP

(g) Spider 5 meter (h) Spider 10 meter (i) Visibility All

Figure 1 : Open space algorithms.

Table 1 : Lengths of the routes and difference to Visibility
All. Additional graph edges compared to Standard.

Algorithm Length Graph Edges
Visibility All 161 m (+ 0%) + 27
Visibility GCP 172 m (+ 7%) + 9
Delaunay 169 m (+ 5%) + 8
Grid 5 meter 197 m (+22%) + 504
Grid 10 meter 197 m (+22%) + 131
Standard 208 m (+29%) + 0
Voronoi 197 m (+22%) + 19
Spider 5 meter 168 m (+ 4%) + 1034
Spider 10 meter 168 m (+ 4%) + 277

Analysis
In order to compare these algorithms on a larger scale, we
implemented them in the GraphHopper routing engine. Af-
terwards we computed the routing graph for each algorithm.
The test area was the OpenStreetMap dataset of Baden-
Württemberg and Austria. The processing time and the
count of additional edges were compared with the respec-
tive values of the standard graph.

However, only the polygons stored as ways (closed
linestrings) were considered. Polygons that are stored as
relations (a data type which consists of a set of Open-
StreetMap features) were not considered due to technical
difficulties. Nevertheless, the analysis is still representative,
since most of the open spaces are stored as ways (table 2).

Figure 2 : Routing possibilities through the open space.

Results

The diagrams (figure 3) show that both the edge count and
the computation time increases for most of the algorithms.
The additional edge count of the algorithms shows a similar
pattern for both regions. In contrast, the additional compu-
tation time for the Visibility All is much higher in Austria
than in Baden-Württemberg.

Table 2 shows that there are less open spaces in Austria than
in Baden-Württemberg. This explains why the relative in-
crease of the edge count in Austria is lower. The quality of
the routing result can be assessed with figure 1 and table 1.
The Visibility All algorithm generates the most natural route
and is moreover the shortest one. However, its computation
time might take very long (figure 3 (b)).

Table 2 : Facts about test areas.

Austria Baden-Württemberg
standard comp. time 8 min 51s 13 min 50s
graph edges 2.5 million 2.7 million
open spaces total 2693 5641
open spaces ways 2459 5225
open spaces relations 234 416
highway ways 1.44 million 1.46 million
share open spaces 0.19 % 0.38 %

Relative Increase Edge Count and Computation Time

R
e
la

ti
ve

 I
n
c
re

a
s
e
 [
%

]

0

50

100

150

200
Relative Computation Time

Relative Edge Count

Vis
ib
ilit

y 
G
C
P

D
el
au

na
y

G
rid

 1
0m

Vo
ro

no
i

Vis
ib
ilit

y 
All

Spi
de

r 1
0m

G
rid

 5
m

Spi
de

r 5
m

(a) Baden-Württemberg

Relative Increase Edge Count and Computation Time

R
e
la

ti
ve

 I
n
c
re

a
s
e
 [
%

]

0

50

100

150

200
Relative Computation Time

Relative Edge Count

Vis
ib
ilit

y 
G
C
P

D
el
au

na
y

G
rid

 1
0m

Vo
ro

no
i

Spi
de

r 1
0m

Vis
ib
ilit

y 
All

G
rid

 5
m

Spi
de

r 5
m

(b) Austria

Figure 3 : Processing results (sorted by edge count).

Outlook

This work has done a pre-assessment for implementing al-
gorithms into a routing engine. The Visibility All algorithm
looks most promising so far. However, it should be improved
by removing unnecessary connections [1]. This would de-
crease the additional edge count and possibly the computa-
tion time. In a next step, areas modeled as relations should
be taken into account as well. Moreover it should be tested
if open space routing has an effect on the performance of
routing requests.

References
[1] Graser, Anita (2016). Integrating Open Spaces into

OpenStreetMap Routing Graphs for Realistic Crossing Behaviour
in Pedestrian Navigation, GI_Forum Journal for Geographic
Information Science.

[2] Dzafic, Dzenan et al. (2015). Routing über Flächen mit
SpiderWebGraph, Symposium für Angewandte Geoinformatik
(AGIT).

A part of the research leading to these results has received
funding from the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement
n° 612096 (CAP4Access).

jakob.miksch@stud.sbg.ac.at

