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Abstract 
 
The exploration of the spatial relationships between crime incidents, the socioeconomic characteristics of 
neighborhoods, as well as physical and structural compositions of the urban landscape is an ongoing 
research issue in Geographic Information (GI) Science. Spatial data mining tools improve the ability to 
gain knowledge from geographic data and help to understand spatio-temporal processes that contribute to 
the presence or absence of criminal offenses. However, most of the currently available tools focus either 
on the spatial, the temporal, or a combination of both aspects. But crime has a spatial and temporal 
component in a multidimensional attribute space. Therefore, it is reasonable to combine all these aspects 
within one analytical framework.  
This paper presents such a methodology to explore crime patterns and their spatial and temporal behavior 
within their socio-economic and environmental neighborhoods. The framework consists of three 
complementary techniques: A spatio-temporal scan statistic to detect crime hotspots, a growing self-
organizing map (SOM) to analyze attribute properties of the neighborhoods, and a mapping of crime 
hotspot trajectories onto different SOM visualizations. The case study uses burglary locations from 
Houston, Texas, from August to October 2005. 
 

1 Background 
 
Today's information era requires efficient computational algorithms and visual analytical approaches to 
analyze huge amounts of digital data in an appropriate manner (Keim et al. 2008, Miller and Han 2009, 
Andrienko et al. 2010). This is also true for criminological analysis. Today, classical mapping approaches, 
as for example, discussed in Chainey and Ratcliffe (2005), are only partially applicable. The 
multidimensionality of current datasets needs more sophisticated methods to cope with space, time, and 
its related attribute information. For instance, kernel density estimation, a popular interpolation and 
hotspot technique, deals only with the spatial context of crime locations, while temporal and attribute 
dimensions are not considered. Thus, it is necessary to develop new toolboxes or incorporate methods 
from other disciplines into criminological analysis. Spatial data mining tools can be used to improve the 
ability to gain knowledge from geographic data and to understand the underlying spatio-temporal 
processes that contribute to the presence or absence of criminal offenses. 
Only a limited number of studies have so far dealt with these issues. Recent examples include the use of 
geovisualization approaches (e.g., isosurfaces) to explore space-time crime patterns (Brunsdon et al. 
2006). However, the suitability to crime analysis remains unclear. Another example to visually analyze 
spatio-temporal crime patterns is a web-based geovisualization tool referred to as GeoVISTA CrimeViz 
(Roth et al. 2010). Additionally, Nakaya and Yano (2010) present a three-dimensional mapping approach 
within a space-time cube. The authors combine space-time variants of kernel density estimations and scan 
statistics, which allows a simultaneous mapping of the geographical extent and the duration of crime 
hotspots. All above studies have in common that they focus either on the spatial, the temporal, or a 



combination of both aspects. Nevertheless, crime is subject to spatial as well as temporal changes and is 
affected by its environment. It is reasonable to combine all aspects of crime within one methodological 
framework. Among the few studies, Andrienko et al. (2010) employ an integrative approach, combining 
SOMs with a set of interactive visualization tools. The usefulness and discovery power is demonstrated 
by a time series of different crime attributes for US states. 
The purpose of this paper is a presentation of a methodological framework to explore crime patterns and 
their spatial and temporal behavior within its socio-economic and environmental context. The framework 
comprises of the following complementary techniques, including the spatio-temporal scan statistic to 
detect crime hotspots as well as a growing SOM to analyze attribute properties of the neighborhoods. 
Trajectories hotspot mapping onto the SOM relates both techniques.  
In this study, burglary locations from Houston during the height of the 2005 Hurricane season (August to 
October 2005), are applied to these techniques. Recent research has shown that natural disasters, like 
hurricanes, have a substantial impact on crime and its spatial distribution (e.g., Leitner and Helbich 2011, 
Leitner et al. 2011). Thus, academics seek to explore the spatial relationships between crime incidents, the 
socioeconomic characteristics of neighborhoods, as well as physical and structural compositions of the 
urban landscape. Previous analysis has shown that the landfall of Hurricane Rita (September 2005), in 
contrast to Hurricane Katrina (August 2005), resulted in a dramatic short-time increase in burglaries and 
small decrease in other crime types (Leitner and Helbich 2009). The authors attribute this stark increase to 
the mandatory evacuation order that was issued before the landfall of Hurricane Rita (a mandatory 
evacuation order was not issued before Hurricane Katrina) and to a different spatio-temporal response of 
different crime types to hurricanes. From a spatial point of view, crime increases occurred primarily in 
neighborhoods with high percentages of African Americans and Hispanics, foremost located in the eastern 
parts of the Houston metropolis. Leitner and Helbich (2009) put forth explanations that individuals, who 
did not follow the evacuation order, may have committed those excess burglaries. Clearly, Leitner and 
Helbich's (2009) study is limited insofar as multivariate demographic and socio-economic classifications 
of the neighborhoods are not taken into account to explain spatio-temporal changes in crime patterns. 
Therefore, the following research objectives will be addressed in this paper: Is the proposed 
methodological framework appropriate for crime analysis and mapping? What are similarities and 
differences among burglary hotspots when comparing Hurricanes Katrina and Rita? Do differently 
characterized neighborhoods affect crime hotspots over time differently? Do trajectories exhibit a cyclical 
pattern or sudden changes in its movements? Do both hurricanes show a (dis)similar spatio-temporal 
pattern of hotspot movements? 
 

2 Study Site and Data 
 
The focus of this research is on the US metropolitan area of Houston, TX. Houston has been hit by many 
hurricanes in the past, such as Hurricanes Katrina and Rita in 2005. To analyze their impact on crime, 
crime data were obtained from the Houston Police Department for the months of August, September, and 
October 2005. The data set covered several weeks before, during, and after the landfall of both Hurricane 
Katrina (August 29th) and Hurricane Rita (September 24th). After geo-coding crime locations using the 
TIGER (Topologically Integrated Geographic Encoding and Referencing system) street network, more 
than 25,000 offenses that occurred during the three-months time period were available for further 
analysis. These crime locations can be subdivided into several offense types, like burglaries, auto theft, 
and aggravated assault. A temporal analysis of the total number of different offense types (Leitner and 
Helbich 2009) indicates that most of them remain relatively stable throughout the study period. Burglaries 
are an interesting exception, showing a significant increase in total numbers during Hurricane Rita. 
Therefore, this study focuses on the spatio-temporal distribution of these 6,730 burglary locations.  
In addition, this study applies several socio-economic and environmental variables to characterize 
different neighborhood types within Houston. It is well-known that US-cities are often affected by, for 
instance, economic or ethnical segregation processes. Preliminary studies based on regression analysis 
(Leitner and Helbich 2011) have already shown that the variables depicted in Table 1 are essential and 
significant driving forces for these economic and ethnical segregation processes. This paper thus focuses 
on these four variables (Table 1) to characterize neighborhoods based on census tract levels. Overall, the 



study site consists of 408 census tracts. 
 
Table 1: Socio-economic and environmental variables for neighborhood characterization (Source: US 
Census) 

Description Min. 1st Quantile Median Mean 3st Quantile Max.
% of African Americans (2000) 0.00 2.83 10.57 25.56 38.72 98.26
% of Hispanics (2000) 0.00 10.89 27.91 35.05 54.16 97.16
% persons below the poverty level (1999) 0.00 8.15 18.30 18.84 26.55 70.40
Euclidean distance to the nearest police  
(sub)station (in meters) 99 1,563 

 
2,343 

 
2,739

 
3,564 9,822

3 Methods 
 
3.1 Spatio-temporal Scan Statistic 
 
The scan statistic (Kulldorff 1997; Kulldorff et al. 1998) is a fairly new method for the detection and 
evaluation of spatio-temporal hotspots. Nevertheless, it is rarely used in crime analysis (e.g., Leitner and 
Helbich 2011). In this research a spatio-temporal hotspot is regarded as a spatial and temporal bounded 
group of cases of sufficient size and concentration to be unlikely to have happened by chance alone. This 
is crucial because in this research no information was available about the percentages of residents that did 
not evacuate despite the mandatory evacuation order issued ahead of Hurricane Rita for the different 
neighborhoods in Houston. This study thus uses burglary counts instead of burglary rates, since no 
information about the at-risk population (residents that did not evacuate) was available. 
The spatio-temporal scan statistic uses the crime locations and their time stamps as input data. The scan 
window is a cylinder with the base area representing the spatial dimension and the height the temporal 
dimension. During the analysis, the cylinder moves from one crime location to the next and continuously 
changes the radius of the base area and its height. This results in a large number of differently-sized 
overlapping cylinders, for which the observed number of crimes is compared with the expected number of 
crimes using a spatio-temporal permutation model. The number of expected crime locations is estimated 
with a Poisson distribution. A spatio-temporal hotspot is identified by a cylinder that includes a 
significantly larger number of observed crime locations than would be expected by chance for a certain 
time period, alone. Monte Carlo simulation determines the statistical significance of each hotspot. An 
advantage of this method is that results can be mapped and that hotspots can be located onto the SOM, 
which is briefly discussed below. 
 
3.2 Self-Organizing Maps 
 
3.2.1 Standard Algorithm and the Growing Grid Extension 
 
The SOM, proposed by Kohonen (2001), is an unsupervised learning neural network. It provides a non-
linear mapping from a high-dimensional input space to a lower-dimensional, often two-dimensional, 
output space. In the process of mapping, the topology of the input space is mostly preserved. Input 
vectors that are close to each other in the input space are mapped to units that are close to each other in 
the output space. SOMs can be used for analysis and visualization (Vesanto, 1999), vector quantization, 
and clustering (Vesanto, 2000). In the context of GIScience, SOMs are primarily employed for spatial 
pattern analysis (e.g., Agarwal and Skupin 2008). 
The SOM consists of an arbitrary number of units, which are connected to adjacent units by a 
neighborhood relation. These relations define the topology of the map, usually in GIS applications a two-
dimensional grid. Each unit is represented by a prototype vector of the same dimension as the input space. 
During each learning step, an input pattern is selected randomly from the set of input vectors and the unit 
with the smallest Euclidean distance to the input vector on the map, also called the best matching unit 
(BMU), is found. The BMU and the units within a certain surrounding neighborhood on the map are 
moved towards the presented input vector. The magnitude of movement depends on their distance to the 
BMU on the map. The neighborhood size and the adaption strength decrease monotonically during the 



training phase. Thus, the learning process is gradually shifting from an initial rough phase, where the 
units on the map are coarsely arranged, to a fine-tuning phase, where only small changes to the map are 
permitted. A drawback of the standard SOM algorithm, which is mostly used in a GIS context (e.g., 
Skupin and Hagelman 2005), is the subjective choice of appropriate model parameters in advance and the 
a-priori specification of the map dimension.  
Therefore, Fritzke (1995) proposed the growing grid (GG) model, which is applied in this research. It 
extends the SOM by introducing a dynamic map structure. Usually the GG training starts with a very 
small two-dimensional map. During the training process the unit that represents most of the input data is 
chosen and a row or column is inserted between this unit and its most distant neighbor. The prototype 
vectors of the new units are interpolated from their neighbors which increases the density of prototype 
vectors in this area of the map. Consequently, input data will be distributed more equally in that area. The 
growth of the map is repeated until a stopping criterion is reached, e.g. the map has grown to a pre-
defined maximum size. 
 
3.2.2 Visualizing Temporal Changes with Self-Organizing Maps 
 
A SOM provides a static mapping of an input space onto a grid that can be easily visualized to gain 
information about the input data (Vesanto, 2000). In the geographic domain, most data have a spatial as 
well as temporal component. Especially the temporal context is often neglected in visualization. A 
pragmatic solution is to create a separate SOM-visualization for each time stamp. For instance, Andrienko 
et al. (2010) link visual analytics with SOMs for different spatio-temporal data representations from 
multiple perspectives. An alternative approach for visualizing temporal patterns is the use of trajectories 
in combination with SOMs (Skupin and Hagelman 2005). A trajectory is a path in the SOM, representing 
different states of an object and its temporal development.  
 
 
4 Results  
 
4.1 Spatial Scan Statistics 
 
In this research the time period from August until October 2005 was studied. The number of burglaries 
per week (approximately 450) shows little fluctuation across the three months time period. One notable 
exception is the week between September 18 and 24, when the number of burglaries increased almost 
three-fold (1185 cases) compared to the normal weekly average. 
The scan statistic was used to identify spatio-temporal burglary hotspots. For the entire time period the 
scan statistic found several spatio-temporal hotspots. Four of these hotspots (Table 2) showed a 
significance level of p < 0.05. All levels of significance are based on 999 Monte Carlo simulations. Most 
of the hotspots lasted just one day. Hurricane Katrina which hit Houston on August 29 2005 did not have 
any impact on hotspot creation. None of the identified hotspot corresponds to the landfall of Hurricane 
Katrina. In contrast, one highly significant hotspot (p < 0.001) is detected during September 21 until 27, 
which corresponds to the landfall of Hurricane Rita. In other words, Hurricane Rita and its associated 
mandatory evacuation led to a significant increase in burglaries. When compared to all other hotspots, the 
hotspot associated with Hurricane Rita also has a large spatial extent and includes a total of 357 burglaries 
cases. A detailed summary of the four hotspots with p < 0.05 is given in Table 2.  
For the subsequent analysis only these four significant hotspots are further investigated. The hotspot sizes 
vary between 4 and 357 burglary locations (Table 2). In a first step, the mean center (average of all x- and 
y-coordinates) of all burglary locations for each hotspot is calculated. Subsequently, the census tracts that 
include a mean center are mapped as a trajectory onto the SOM. Figure 1 visualizes the mean centers of 
each of the four hotspots. It is noteworthy, that the calculated hotspots represent discrete phenomena in 
time. Thus, the trajectory does not imply a continuous movement of a hotspot, but instead it maps the 
sequential emergence of underlying phenomena. Therefore, the concept of a trajectory is adapted and the 
arcs are not drawn. The first hotspot appears in the west of the metropolitan area and the following two 
hotspots occur eastward. The fourth hotspot is located adjacent to the second one in the center of the city.  
 



Table 2: Results from spatio-temporal scan statistic 

Number  
of 

hotspot 
Hotspot 
begin 

Hotspot 
end 

Hotspot 
center x

Hotspot
center y

Number 
of cases

p-
value

1 25.08.2005 25.08.2005 1430080 848937 4 0.048
2 09.09.2005 09.09.2005 1441487 850182 6 0.019
3 21.09.2005 27.09.2005 1453910 855455 357 0.001
4 10.10.2005 10.10.2005 1441430 850310 5 0.008

 

 

Figure 1: Mean centers of burglary hotspots ordered temporarily.  
 
4.2 Growing SOM and Trajectory mapping 
 
To analyze the emergence of crime hotspots in attribute space and to get deeper insights into the 
demographic and socio-economic conditions characterizing the study area, a GG was trained. As stated in 
Section 2, a pre-selection of attributes was conducted (see Table 1). The GG was allowed to grow, until it 
exceeded 500 neurons. The resulting map consists of a grid with 25 columns and 21 rows. Because a 
trained GG is identical to a standard SOM, we will not further distinguish between the two.  
For analysis it is convenient to visualize the SOM (Versanto, 1999). In this study two visualization 
methods are considered, including the unified distance matrix (U-matrix; Ultsch, 1993) and Component 
Planes (CP). The U-matrix visualizes the difference of neighboring units within the map. Clusters become 
visible by distinct outlines of their cluster boundaries. Thus, the U-matrix shows both the present cluster 
structure and the quality of the clustering. Figure 2 presents the U-matrix of the trained SOM. Clearly, the 
SOM failed to outline distinct clusters. Nevertheless, a certain level of homogeneity can be observed at 
the right boundary of the U-matrix. Detailed inspection of these units shows that these dark blue cells are 
characterized by low percentages of African Americans as well as Hispanic populations and a small 
percentage of people living below the poverty level. 
 



 

Figure 2: U-matrix of the neighborhood characteristics and the mapped crime hotspot trajectory. Red 
colors correspond to large distances between neighborhood characteristics, blue to short distances. 

 
A CP is a projection of a single component (i.e., neighborhood characteristic) on the map. If all 
component planes are drawn, the whole information about the map is revealed. By inspecting a CP and 
relating it to other CPs of the SOM, information about the SOM structure can be gained. In this research 
four CPs, one for each input dimension, are used (Figure 3). A comparison between the CPs shows that 
poverty primarily correlates with the percentage of African Americans and Hispanics. However, the most 
impoverished neighborhoods are mostly occupied by African Americans. The CP representing the 
distance to the next police (sub) station seems to be uncorrelated to the other three CPs.  
 

    



    

Figure 3: Component planes characterizing Houston’s neighborhoods with hotspot Trajectory. % African 
Americans (top left); % Hispanics (top right); % population below poverty level (bottom left); and 

distance to the nearest police (sub) station (bottom right). Red color corresponds to high values, blue 
color to low values. 

 
Based on the results of the scan statistic and the SOM, a trajectory can be projected onto the SOM. Thus, 
the trajectory represents the sequential emergence of crime hotspots in respect to the attributive change of 
Houston’s neighborhoods. The trajectory starts at August 25, four days before Hurricane Katrina (August 
29h) made landfall and ends at October 10, several weeks after Hurricane Rita (September 24th) made 
landfall. The time periods and locations of the trajectory are presented in Table 2 above. Hurricane Rita 
happened in the period of hotspot 3, while the time of the landfall of Hurricane Katrina is not directly 
reflected by any hotspot. The trajectory clearly depicts a notable pattern. First, it is noticeable that the 
trajectory depicts a close repetition of characteristics at the second and fourth hotspot. These two hotspots 
are also geographically adjacent. Secondly, the first and last hotspots are very distinct, hence these two 
hotspots have emerged in substantially different attribute spaces. 
The trajectory combined with the U-Matrix (Figure 2) reveals, that the hotspots 2 and 4 are located in 
areas that are characterized by a low poverty rate and low percentages of African American as well as 
Hispanic populations. The hotspots 1 and 3 are located in regions that are heterogeneous in terms of 
neighborhood characteristics, thus a clear trend is difficult to be gained from this representation. The 
crime hotspot trajectory drawn on the CP (Figure 3) for the percentage of African Americans provides no 
evidence for a significant pattern. During the time periods two, three, and four the hotspots are located in 
neighborhoods with a low percentage of African American population. Only the first hotspot resides 
within a neighborhood with a somewhat larger African Americans percentage. A significant pattern is 
notable for the trajectory projected onto the CP for the percentage of Hispanics. While the second and 
fourth crime hotspots are located in regions with a low percentage of Hispanic population, the third 
hotspot is located in a neighborhood that shows a rather high percentage of Hispanic population. Because 
at time period of hotspot 3 Hurricane Rita made its landfall, it can be assumed that the hurricane and the 
mandatory evacuation of Houston’s population are important causes for the creation of this distinct 
hotspot location. This observation supports the results of Leitner and Helbich (2011), who discovered a 
significant burglary increase in neighborhoods with high percentages of African Americans and Hispanics 
during Rita’s landfall. The percentage of people living below the poverty level is high in neighborhoods 
with high percentages of African Americans or Hispanics. Thus, it is not surprising that the hotspot 
created during Hurricane Rita is located in a region with a high percentage of people living below the 
poverty level. In contrast, the other three hotspots are located in areas with a lower percentage of people 
living below the poverty level. Finally, distance to the nearest police station has no affect, whatsoever on 
hotspot locations and hence the trajectory.  
 



5 Conclusions and Future Work 
 
This research proposed a methodological and analytical framework that included the scan statistic, SOMs, 
and attribute-time paths (trajectories) to explore crime patterns. This research accounts for the crime 
patterns’ temporal and spatial dimensions in addition to their multivariate socio-economic and 
demographic classifications of their neighborhoods. Each of this framework’s components provides 
distinct capabilities for the analysis of different aspects of burglary locations and the factors responsible 
for those locations. The scan statistic enables the user to detect spatio-temporal hotspots, while SOMs and 
trajectories are useful for analyzing multivariate patterns. The combination of these techniques into a 
single framework enables synergistic effects, permitting even more powerful analysis by simultaneously 
exploring space, time, and the corresponding attribute space, thus gain a better understanding of spatial 
and temporal processes. 
The usefulness of the presented framework was demonstrated by applying it to the analysis of burglaries 
in Houston before, during, and after the landfall of Hurricanes Katrina and Rita in 2005. It was shown that 
the hotspot found during the landfall of Hurricane Rita significantly differed from hotspots from previous 
and later periods. In contrast to Hurricane Rita, no hotspot of burglaries was detected during the landfall 
of Katrina. The fact that no mandatory evacuation was issued prior to the landfall of Hurricane Katrina (in 
contrast to Hurricane Rita, when such an evacuation was ordered) may have affected the number and 
distribution of burglaries. The analysis of the SOM and the hotspot trajectory further revealed that the 
hotspot during Hurricane Rita emerged in neighborhoods that are considerably different from the others in 
terms of the ethnic composition and the percentage of population living below the poverty level.  
Future work must address issues related to the method and to the amount of data being used in this study. 
First, a model comparison between the GG algorithm and the standard SOM algorithm is needed in order 
to evaluate, which of the two algorithms is more accurate. However, the incorporation of other SOM 
variants can help to make the framework more robust to parameterization or to improve the understanding 
of the processes by taking special aspects of the input data, e.g. hierarchical or spatial relationships, into 
account. Second, future work needs to include other criminal offense types and additional socio-economic 
as well as demographic variables to improve the understanding of the interrelationships between 
hurricanes and crime. It seems promising to visualize hotspots from other crime types as trajectories and 
analyzing their sequential emergence in relationships to each other.  
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