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9 Exploiting Big VGI to 
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9.1  IntroductIon

The recent technological advances in data production and dissemination have 
enabled the generation of unprecedented volumes of geospatial data, giving rise 
to the paradigm of big data. Part of this trend is volunteered geographic informa-
tion (VGI), that is, geographic information (GI) produced by volunteer contributors 
(Goodchild 2007), and crowdsourced data such as those obtained from social media. 
Whether big data refer to these huge volumes of data, which no longer fit traditional 
database structures (Dumbill 2013), or to the new technologies and techniques that 
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must be developed to deal with these massive data sets (Davenport et al. 2012), there 
is a common understanding that the full potential of such amount of data can only be 
exploited if information and knowledge with added value can be extracted from it.

As for many applications, the possibility to exploit massive data sets raises new 
opportunities to improve mobility services, including routing and navigation ser-
vices. Traditionally, routing and navigation services relied on the digitization of 
the existing streets by commercial mapping agencies and mainly two companies 
(NAVTEQ and TomTom [formerly TeleAtlas]). The emergence of VGI and crowd-
sourcing-based applications is changing this perspective by offering a wide range of 
additional information that can be used to complement the official data produced by 
governments and mapping agencies. VGI and crowdsourcing applications have the 
potential to offer more diverse, more detailed, more local, and more contextualized 
data. Data from VGI and crowdsourcing applications with a potential of leveraging 
billion of contributors can fulfil the gaps found in official data that cannot be updated 
quickly at a low cost. For instance, if VGI and crowdsourcing applications could be 
exploited into some extent, developers could think of developing routing and navi-
gation services that recommended routes personalized according to the travelers’ 
context. However, near real-time interaction with the changes detected on the road 
network through various sources could help reduce congestion, energy consumption, 
greenhouse gas and particle emissions, etc.

While VGI and crowdsourcing applications are clearly a sort of big geo-data, they 
feature some particularities that make their exploitation challenging at the moment. 
This chapter is dedicated to the analysis of the potential of VGI and crowdsourced 
data for improving routing and navigation services. The limitations of these types 
of data and how their exploitation is challenging are also discussed. Based on these 
limitations, we suggest some avenues for future research on the next generation of 
collaborative routing and navigation services.

This chapter begins with briefly reviewing the paradigms of big data and VGI. By 
providing a background to traditional routing and navigation services, we explain the 
types of big VGI data sources that could be exploited to upgrade routing and naviga-
tion services. Then, drawing from the limitations of VGI and crowdsourced data, 
we discuss the challenges for exploiting big VGI to improve routing and navigation 
services.

9.2  What Is BIg data?

Recent technological advances in data production and dissemination have enabled 
the generation of unprecedented volumes of geospatial data. In 2012, it was esti-
mated that the global volume of data was growing at a 50% rate each year 
(Lohr 2012), due to the increasing dissemination of digital sensors, smart phones, 
GPS-enabled devices, crowdsourcing applications, and social media, among other 
phenomena. While geospatial data have traditionally remained at the hand of experts 
(governments, mapping agencies), paradigms such as open data, social media, and 
collaborative mapping projects make it possible for an increasing proportion of these 
data to be virtually available to anyone, with the potential to benefit businesses, civil 
society, and individuals in general.
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177Exploiting Big VGI to Improve Routing and Navigation Services

This huge amount of data has given rise to the term big data. Big data is a loosely 
used term that is employed to refer to two ideas. First, it is used to refer to the huge 
volume of data itself. For example, Dumbill (2013) states that “Big Data is data that 
exceeds the processing capacity of conventional data systems” and does not “fit the 
structure of your database architectures,” because of its size but also because of its 
dynamicity. Secondly, the term is also used, perhaps less frequently, to refer to the 
set of techniques that are being developed to deal with such volumes of data. For 
example, Davenport et al. (2012) report that the term is used to refer to “smarter, 
more insightful analysis” of large volumes of data, while Oracle defines it as “tech-
niques and technologies that enable enterprises to effectively and economically 
 analyze all of their data” (Oracle 2012). Indeed, big data in itself is of no great value 
unless we find means of managing and analyzing this less conventional data, which 
is not necessarily formatted according to the usual rows and columns of traditional 
databases. The question raised by big data is therefore how to extract information 
and knowledge from these raw data streams, since traditional approaches are not 
suitable for such amount and heterogeneity of data coming from various sources 
(Birkin 2012; Davenport et al. 2012).

In parallel with the aforementioned technological advances for data production 
and collection, storage technologies have also been significantly improved, making 
storage relatively cheap. In 2009, writing on the Pathologies of Big Data, Jacobs 
was already saying that “transaction processing and data storage are largely solved 
problems” (Jacobs 2009). Rather, major difficulties arise when it comes to extracting 
information and learning something from massive data sets. For example, Vatsavai 
et al. (2012) highlight the limitations of traditional spatial data mining algorithms 
such as mixture models for spatial clustering or the Markov random field classifiers 
for land cover analysis when confronted with massive data sets.

The range of techniques and technologies dedicated to big data is wide. Existing 
analytic techniques for extracting knowledge from the data are being improved to 
be able to deal with massive data sets. These techniques include SQL queries, data 
mining, statistical analysis, clustering, natural language processing, text analytics, 
and artificial intelligence, to name a few (Russom 2011). These analytic techniques 
can be deployed to improve performance of knowledge extraction algorithms such 
as social media analysis (Mathioudakis et al. 2010), change detection algorithms 
for high-resolution images (Pacifici and Del Frate 2010), and complex object rec-
ognition (Vatsavai et al. 2012), for example. The ability to deal with massive data 
sets is supported by underlying technologies such as Google’s MapReduce big data 
processing framework and its open-source implementation Hadoop, which is now 
considered by some as the de facto standard in industry and academia (Dittrich 
and Quiané-Ruiz 2012). MapReduce is a programming model that supports the 
development of scalable parallel applications for big data (Dean and Ghemawat 
2004). It is based on a distributed file system where data, represented as (key, value) 
pairs, are initially partitioned in several machines before being processed. With 
MapReduce, data mining algorithms such as clustering, frequent pattern mining, 
classifiers, and graph analysis can be parallelized to be able to deal with mas-
sive data sets. Several ongoing researches are conducted to improve MapReduce, 
with, for example, enhanced join algorithms (Okcan and Riedewald 2011), query 
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optimization techniques (Herodotou and Babu 2011), and indexing techniques 
(Jiang et al. 2010). While still being developed, these enabling technologies will 
certainly play an important role in the use of VGI.

9.3  VgI as BIg data

Back in 1997, Goodchild pointed out that as networks became increasingly ubiqui-
tous, the production of GI was moving from a centralized to a distributed  process. 
Nowadays, users can produce GI via a variety of Internet applications; as a result, 
a global digital commons of geographic knowledge is created without having to 
rely solely on traditional geospatial data production processes (Hardy 2010). In 
2007, Goodchild introduced the term volunteered geographic information to refer 
to the GI generated by users through Web 2.0 era applications. Later, Ballatore 
and Bertolotto (2011) stated that the VGI paradigm reflects the transformation 
of users from passive geospatial information consumers to active contributors. 
However, Coleman et al. (2009) argue that the concept of user-generated content 
is not new, referring for instance to public participation GIS where users can pro-
vide input and feedback to decision makers and involved communities through 
web-based applications. The novelty, they claim, lies in part in the community-
based aspect of the users’ contribution to this digital commons of geographic 
knowledge (Coleman et al. 2009). VGI is often created out of the collaborative 
involvement of large communities of users in a common project, for example, 
OpenStreetMap (OSM) or Wikimapia, where individuals can produce GI that 
emanates from their own local knowledge of a geographic reality or edit informa-
tion provided by other individuals. For example, in OSM, users can describe map 
features—such as roads, water bodies, and points of interest—using tags, provid-
ing information at a level that often goes beyond the level of detail that can be 
provided by traditional geospatial data producers (Goetz et al. 2012). As a result, 
and with the ever-increasing number of crowdsourcing applications, the volume 
of VGI is becoming huge, with no doubt that VGI is now an important component 
of big data.

Among the advantages associated with VGI, researchers highlight its use to 
enrich, update, or complete existing geospatial data sets (De Longueville et al. 
2010; Goetz and Zipf 2011; Goodchild 2007; Gupta 2007; Tulloch 2008). This 
advantage is especially put forward in the context where traditional geospatial 
data producers, which are usually governments, may lack the capacity to generate 
data sets with comprehensive spatial and temporal coverage and level of detail 
(Gupta 2007; Tulloch 2008) such as those needed for routing services to be effi-
cient. Furthermore, it was highlighted that VGI can be provided and disseminated 
in a timely, near real-time fashion, which is highly required in routing services. 
The advantages associated with VGI strongly suggest that this type of knowledge 
is highly valuable and is likely to help providing a dynamic picture of the envi-
ronment (De Longueville et al. 2010; Mooney and Corcoran 2011). Nevertheless, 
the use of VGI for mobile applications such as routing and navigation is not yet 
fully achievable, as it is hampered by various obstacles related to large volumes, 
heterogeneity, and credibility.
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9.4  tradItIonal routIng serVIces

Vehicle routing is primarily based on digital geographic data. The off turning of 
 selective availability of GPS by the order of the former US president Bill Clinton 
in the year 2000 (http://clinton3.nara.gov/WH/EOP/OSTP/html/0053_2.html) was 
the beginning of a new era of positioning on Earth. Since then, positioning has become 
more precise and mobile systems have been able to localize themselves precisely on the 
road. Consequently, routing is combined with navigation. The digitization of the exist-
ing streets by mainly two companies (NAVTEQ and TomTom, [formerly TeleAtlas]) 
provides the necessary data set for routing applications. In parallel, web services for 
routing were emerged. One of the most popular services is Google Maps that provides 
routes in many areas (http://googleblog.blogspot.de/2005/02/mapping-your-way.html). 
Since its launch in 2005, the service has been improved by the addition of public 
transport data and the integration of real-time traffic information. By developing 
new algorithms,  especially those that incorporate hierarchical techniques, routing 
has become faster, particularly for long route calculations (Delling et al. 2009). 
Hierarchical techniques exploit the hierarchical structure of the road network to 
reduce the time required to compute queries (Bauer et al. 2008). Nowadays, vehicle 
routing can provide routes based on such criteria as distance, road type, and traf-
fic. In terms of standards for interoperability, interfaces for location-based services 
(LBSs), and in particular for routing, were developed (Mabrouk et al. 2005).

With the arrival of VGI and, notably, of the OSM project, a second generation of 
route planning services is starting to emerge. VGI applications make routable data 
more easily available for free (Neis and Zipf 2007) and reduce information gaps. For 
example, the OpenRouteService.org uses OSM as a source of data (Figure 9.1). Users 
can add points of interest (POIs) as identified in OSM or search for POIs by name. 
Using other data sources (besides OSM) to search for POIs would enable users to 

FIgure 9.1  OpenRouteService.org with selection of POIs.
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choose among a wider selection of POIs; however, extensive integration work would 
be required to merge the different heterogeneous data sets.

In addition, special routing services such as wheelchair routing, bike routing, and 
agricultural routing, to name only a few, are being designed. To provide the appropri-
ate data required for the aforementioned types of routing services, new sources of data 
have been considered, for example, crowdsourced and sensor data. For instance, they 
help to consider weather conditions such as rain, ice, or snow, which can be measured 
by sensors and, therefore, the traffic conditions can be up-to-the-minute predicted. 
Undoubtedly, with the help of sensor data or crowdsourced information, it will be pos-
sible to consider traffic load, weather conditions, and physical road conditions to support 
near real-time route planning. For example, traffic jams caused by slippery roads can be 
avoided. But for realizing these visions, a closer look at the data is necessary.

9.5  routIng serVIces usIng BIg VgI/croWdsourced data

Within a world where sensors are pervasive, we are now able to collect huge 
amounts of data. From weather stations, traffic information gathered by float-
ing car data (FCD), data from vehicle telematics systems, mobile phone data, 
or sensor data of smart phones, the possibility for improving routing services 
through the use of such data is huge. Other data sources that can be of interest 
include social media like Twitter, Facebook, or Flickr. All of these data sets are 
voluminous (with size being dependent on the region). Consequently, these data 
sets fall under the big data paradigm because of their volume, dynamicity, and 
heterogeneity. As VGI services offer new types of data for example, photos, POIs, 
and events, VGI has the potential to substantially improve the performance and 
outcomes of the existing routing services. Some examples will be explained in the 
following section.

9.5.1   Routing with LandmaRks ExtRactEd fRom 
Big Vgi/cRowdsouRcEd data

Landmarks have been defined as any feature that can potentially serve as a point of 
reference (Lynch 1960). They play an important role when looking for the best route, 
and therefore, they help to increase the relevance and personalization of routing ser-
vices (Duckham et al. 2010). Example of landmarks, identified in Zhu’s  classification 
of landmarks (2012), include social landmarks, which are places where people 
socialize and interact, such as parks and public places; economic landmarks, such as 
markets; and historical landmarks, such as monuments and historic buildings. It has 
been shown that such landmarks are important in forming mental representations of 
the environment (Couclelis et al. 1987).

The integration of landmarks in navigation and routing services involves two 
steps. The first step is the identification of features that could be considered as land-
marks. The second step is the classification of landmarks, according to different 
parameters that indicate relevance, and the selection of the appropriate landmarks 
to be included in the routing preferences. There are a number of research projects 
focused on extracting and ranking of landmarks for routing purposes (Caduff and 
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Timpf 2005; Duckham et al. 2010; Kippler and Winter 2005; Raubal and Winter 
2002; Winter et al. 2008). Traditionally, landmarks are extracted from topological 
databases. However, other data sources have been used as well, such as web docu-
ments (Tezuka and Tanaka 2005).

Besides traditional spatial databases, VGI and crowdsourcing can be increas-
ingly regarded as relevant sources for landmarks. Because VGI and  crowdsourcing 
sources, in some regions, provide a more comprehensive spatial and temporal cov-
erage and level of detail than sources provided by the governmental/commercial 
mapping agencies, they can complement these official sources where local fea-
tures are identified from the point of view of users and local population. As an 
example, the Flickr photo portal is an interesting potential source for identifying 
landmarks. In Flickr, users can post photos, associate tags with these photos, and 
create groups of photos around particular themes. Photos, tags, and themes can be 
exploited to extract landmarks. The problem is that due to the very high volume of 
pictures and tags, as well as heterogeneity of tags, searching for landmarks in Flickr 
will result in a large number of irrelevant results. An appropriate landmark iden-
tification algorithm would need to cross-reference different information in Flickr 
(e.g., content-based image analysis, text, tags, social groups) in order to identify a 
relevant subset of landmarks. Similar problems arise when considering other poten-
tial sources of landmarks, such as OSM where objects are identified with (key, value) 
pairs that can use heterogeneous terms. Nevertheless, these sources have a huge 
potential to make more personalized routes where a large variety of landmarks can 
be selected according to users’ profiles and interests.

9.5.2  gPs tRacEs

Maps used for routing services are generally created from geographical databases. 
Such maps are not frequently updated because of the cost associated with these 
updates. Recently, interest in building road maps automatically from GPS traces as a 
complement to geographical databases has increased (Liu et al. 2012).

GPS traces are sequences of GPS coordinates generated by a moving device 
(e.g., instrumented probe vehicle). GPS traces can be obtained from cell phones, 
in-vehicle navigation devices, or GPS-enabled devices. Currently, most active road 
users, such as taxis, public transports, freight services, and agricultural vehicles, use 
navigation systems. Some of these vehicles are tracked by proprietary telematics sys-
tems (Lauer and Zipf 2013). These telematics systems can generate massive volumes 
of spatiotemporal data, from which relevant information that can improve routing 
services can be extracted. GPS traces allow extraction of vehicle trajectories and 
measurement of vehicle speed, idling, and traffic congestion. Such derived data can 
allow generating temporally detailed road maps, where the current speed of vehicles 
on road segments can be known in near real time to prevent other vehicles approach-
ing congested areas. Using data on vehicle speed derived from GPS traces, we can 
also estimate fuel efficiency and greenhouse gas emissions. This would enable to 
make personalized route recommendations where greenhouse gas emissions and 
fuel consumption are minimized. However, deriving such data involves accessing 
and  analyzing massive temporal GPS data.

AQ1
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9.5.3  sociaL mEdia REPoRts

Conventional traffic data collection methods are based on roadside inductive loop 
detectors, which are costly to deploy and maintain. As an alternative, social media 
can be leveraged to gather information on road conditions. A number of applica-
tions have been developed that allow sharing road network information. A popular 
example is Waze, which is a community-based traffic and navigation application 
(www.waze.com). The application can deliver alerts when road incidents such as acci-
dents, road hazards, traffic jams, and meteorological events occur and are detected 
and shared by contributors. Waze integrates a traffic flow model derived from phone 
data in its routing engine to refine route calculation by adjusting edge weights. 
Another example is Traffic Pulse, a participatory mobile sensor web platform that 
relies on voluntary use of smart phones to report on road conditions (Li et al. 2012). 
This mobile application allows to querying and visualizing the city’s mobility infor-
mation in real time. Other types of social platforms dedicated to more specific aspects 
of road networks are available, such as platforms to report on potholes (e.g., Pothole 
Info). Reporting of road incidents by several existing social media and web platforms 
presents a huge potential to keep drivers and travelers informed of the best route at 
any given time.

9.6   challenges For exploItIng BIg VgI 
to ImproVe routIng serVIces

9.6.1  Limitations of Vgi and cRowdsouRcEd data

Credibility, reliability, and quality are among the main issues raised regarding VGI 
and crowdsourcing (Bishr and Mantelas 2008; Elwood 2008; Flanagin and Metzger 
2008; Gouveia and Fonseca 2008; Jokar Arsanjani et al. 2013; Sieber 2007). VGI 
can be perceived as lacking credibility and reliability because it is produced by non-
experts in a context that highly differs from the structured institution-initiated and 
expert-driven contexts (Elwood 2008). For example, while expert geospatial data pro-
ducers are expected to generate data with a certain level of precision, users of VGI 
applications are not formally required to do so. As explained by De Longueville et al. 
(2009), users of VGI applications may have a vague memory of the geographic phe-
nomenon they report on, or they could perceive only a certain portion of it. Another 
concern related to the quality of VGI is the fact that the profile and motivation of 
contributors are often unknown. As mentioned by De Longueville et al. (2010), the 
socioeconomic, sociological, and cultural aspects that characterize users can have 
an impact on VGI generation, by making it less reliable. Being aware of the relevant 
characteristics of the contributors can help properly interpret VGI and assess its qual-
ity and fitness for use, since evaluating the quality of geospatial data sets (e.g., VGI) 
in spatial data infrastructure is a challenging research problem (Mobasheri 2013).

Besides the issue of VGI quality, the GI community still faces a number of obsta-
cles regarding how VGI can be interpreted. VGI is often produced and stored using 
natural language, rather than agreed-upon terminologies and formal language usu-
ally employed in existing standardized geospatial database systems (Elwood 2008). 
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According to Scheider et al. (2011), the terms used by contributors to describe geo-
graphic phenomena lack unambiguous interpretation in terms of reproducible obser-
vations. Nevertheless, some VGI applications, such as OSM, require contributors to 
employ a predetermined terminology (codified in an ontology). However, Scheider 
et al. (2011) indicate that it is difficult to reach a consensus regarding the terminology 
to use, while Mooney and Corcoran (2011) state that there is a lack of a mechanism 
for checking adherence to the agreed-upon ontology. As a result, the heterogeneity 
affecting VGI is likely to be more severe than the heterogeneity affecting traditional 
geospatial data (Grossner and Glennon 2007; Hyon 2007).

9.6.2  imPact on thE dEVELoPmEnt of Routing and naVigation sERVicEs

The aforementioned limitations associated with massive VGI and crowdsourced data 
sets have an impact on our ability to exploit them to improve routing and navigation 
services.

9.6.2.1  Interoperability
In order to exploit VGI properly, various existing data sources must be conflated to 
routing and navigation services. However, this is not always possible due to interoper-
ability issues. There exist a number of researches that have used VGI or  crowdsourced 
data from a specific source for routing purposes; for example, Abassi et al. (2009) 
use Flickr tags and groups to identify landmarks. However, in order to improve rout-
ing services further, data fusion and data integration techniques must be applied to 
fuse diverse sourced data. For example, different characteristics of a landmark could 
be retrieved from different sources. This is currently hampered by  heterogeneity of 
the formats, protocols, and semantics of these sources. A first avenue is therefore to 
use, adapt, or develop standards to support interoperability. Currently, there exist no 
standards to describe VGI or crowdsourcing applications. However, some research 
works are being conducted that suggest how to use existing standards to facilitate 
access to VGI and crowdsourced data. For instance, De Longueville et al. (2010) 
proposed a framework where OGC’s Sensor Web Enablement (SWE) standards, for 
example, sensor observation service (SOS), would support access to VGI sources, 
arguing that VGI can be described just as sensor observations. As another example, 
Auer and Zipf (2009) explore and demonstrate how OGC open standards can be used 
for user-generated content and, in particular, how the OpenRouteService uses data 
from OSM and WFS, WPS, WMS, etc.

9.6.2.2  Finding the right data
Although having access to a large variety of sources creates a huge potential, it does 
not guarantee that the most appropriate data required for a given situation should be 
found easily. Certainly, VGI data contain redundant and noisy data as well, which 
demand for filtering and abstracting data. This is more necessary when it comes to 
providing more personalized routing services, where only the geographical objects 
of interest would be displayed on the map. Features that should be displayed on the 
routing and navigation map should be selected according to users’ context (his/her 
location, purpose of travel, mode of travel, POIs, etc.). This is not only because the 
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map should be personalized, however. Routing and navigation services are no longer 
limited to the 2D world but tend to increasingly include 3D representations of the 
environment. But experimental research reveals significant issues in using the third 
dimension to create effective data visualizations, thus the need to select only the ele-
ments that should be displayed, especially for mobile devices (Shepherd 2008). The 
need of displaying only a subset of relevant elements puts forward the need for mod-
elling users’ context appropriately for mobile applications and gathering information 
on users’ context. The information on users’ context can also be obtained through 
the processing of VGI and crowdsourced data sets (e.g., logs, location, historic tra-
jectories), which involves the use of efficient data mining algorithms of various types 
(text mining, clustering, etc.). Information on users’ context gathered from social 
media could also help gain insight into the drivers’ behavior, habits, and desires to 
recommend more suited routes.

Retrieving the relevant data can be achieved in different ways, for example, through 
pull-based or event-detection systems. Event detection systems should especially be 
considered for integrating recent changes in the road network that may affect the 
traffic, such as construction, meteorological events, or road accidents (Bakillah et al. 
2013). This requires the coupling of various sources such as social media reports 
discussed earlier and the routing service. Change detection algorithms can also be 
leveraged too to identify changes in the road network. However, they must be able to 
deal with high-spatial and high temporal resolution images, which introduce impor-
tant constraints on computational resources. Existing spatiotemporal data mining 
algorithms such as the spatial autoregressive model, Markov Random Field clas-
sifiers, and Gaussian process learning and mixture models need to be improved to 
be more scalable and be able to achieve change detection with high spatiotemporal 
resolution images (Vatsavai et al. 2012).

9.6.2.3  analyzing and Interpreting data
Analyzing raw data from such variety of sources poses challenges due to high vol-
ume and heterogeneity of VGI and crowdsourced data. Heterogeneity, at the seman-
tic level, means that different terminologies and representations are used to describe 
similar features of the real world. Because crowdsourcing and VGI applications do 
not necessarily adhere to standard terminologies, the heterogeneity problems are 
huge and far from being resolved. Heterogeneities hamper the ability to analyze 
and fuse heterogeneous data. Ontologies are used in some official spatial data sets 
to facilitate semantic interoperability; however, even for official data with con-
trolled terminology, recent research in this domain demonstrates that it is difficult 
to establish consensus on a single ontology and difficult as well to bridge between 
the different ontologies used to describe different data sets. One solution that has 
been explored to deal with semantics of crowdsourced data is the use of folkson-
omies. The term folksonomy is a combination of the words folk and taxonomy 
(Wal 2007). It is a lightweight system to share resources and the user-created ad 
hoc labels associated with those resources. In a folksonomy, users are free to attach 
any term, called a tag in folksonomy nomenclature, to the resources in question. 
The control and design of a taxonomy are replaced in a folksonomy with the con-
cepts of self-organization and emergence. There are several web-based applications 

AQ2
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that demonstrate the usefulness of tags and folksonomies to gather user-generated 
information. These applications include Delicious for URL bookmarks, Flickr for 
pictures, and CiteULike for academic publications, which all use folksonomies. By 
enabling knowledge discovery and information filtering, folksonomies could be used 
to tackle the heterogeneity challenge of handling the large amount of user-generated 
data. However, folksonomies alone would only be one tool but could not be sufficient 
to resolve the heterogeneity problem, because folksonomies are heterogeneous them-
selves. More research is necessary to determine how folksonomies could be useful to 
support the fusion of different VGI sets.

Data obtained from VGI and crowdsourced applications also need to be analyzed 
for credibility. It is believed that such sources are not always credible because con-
tributors are not professional and their motivation is unknown. Therefore, there is a 
strong need to develop methods to assess the credibility of VGI. However, it is not 
very likely that the motivation of individual users can be traced, since contributors are 
mostly anonymous. Therefore, if we cannot identify the contributors’ motivations, 
another avenue to assess the credibility of the contributed data is  corroboration, that 
is, verifying if such information has also been provided by another source. This is 
linked to the aforementioned capacity to interoperate different sources with hetero-
geneous formats and semantics but also to the capacity to improve the efficiency of 
existing knowledge extraction and data mining algorithms with big data techniques 
to support data exploitation. Enabling technologies such as parallel computing, cloud 
computing, and virtual data marts is to be explored for this purpose.

The processing and analysis of VGI and crowdsourced data are also constrained 
by problems regarding the privacy of the contributors. For example, GPS trace data 
could allow tracking individual’s trajectory and traveling patterns, which is a poten-
tial threat to privacy and safety of the individual. To address this, one solution is to 
aggregate GPS trace data before making it available to applications.

9.6.3  aPPLicaBiLity of Big data soLutions to Big Vgi

The solutions that have been proposed to deal with big data have the potential to help 
enhance the interoperability, discoverability, analysis, and interpretation of large 
VGI data sets. However, solutions for big data are not sufficient alone, because, as 
explained in this chapter, VGI displays unique characteristics that differentiate it 
from other more conventional types of data. Table 9.1 examines some of the solutions 
that were put forward to deal with big data and explain their limitations or how they 
should be complemented with other techniques to be suitable for VGI.

Standardization (of information models and services) is one main solution to be 
able to deal with large amounts of data coming from different sources and ensure 
interoperability. One of the main drawbacks with respect to VGI is that it is difficult 
to impose standards to the VGI community. On the other hand, however, open stan-
dards being developed, for example, the OGC Web Processing Service, are more and 
more used by VGI applications because the open nature of these standards matches 
with the ideological objective of VGI, which is to make data open to anyone.

With respect to discovery and analysis capacity, the parallelization techniques 
such as MapReduce processing framework offer interesting potential to increase 
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processing capacity for performing these tasks. However, VGI data sets are intrin-
sically noisier than conventional data, so intensive data management quality must 
still be developed for VGI in particular. A similar analysis can be conducted for 
cloud computing, which allows to deal with volumes of data but does not address 
the issue of quality.

Appropriate interpretation of data is one of the main keys to help discovery and 
meaningful analysis of VGI data sets. Appropriate interpretation of data requires 
explicit semantics associated with data. One of the solutions for giving meaning 
to large data sets is Linked Data. Linked Data is a web of data coming from dif-
ferent sources, linked through Resource Description Framework (RDF) predicates 
(Bizer et al. 2009). For example, in Linked Data, two entities (e.g., Department of 
Geomatics Engineering and University of Calgary) can be identified by their unique 
resource identifiers (URIs) and linked through the predicate within. As Linked Data 
contains huge amount of data sets semantically linked to other data sets, it consti-
tutes a rich source for supporting the interpretation of data. However, to be appli-
cable to VGI data sets, there is a need for automated or semiautomated techniques 
to generate semantically meaningful links between entities of VGI data sets and 
entities in Linked Data. In this case again, the issues of noisiness and heterogeneity 
are the main obstacles to establishing appropriate links.

9.7  summary

Routing and navigation services are moving from a relatively static, fit-for-all per-
spective to a highly personalized, near real-time routing and navigation experience. 
The objective of routing services is no longer just to recommend the shortest route 
but rather to recommend the route that takes into account a large variety of informa-
tion and preferences. These preferences include POIs, the very current road condi-
tions, and the optimization of various parameters such as energy consumption. In 
addition, routing and navigation services are no longer exclusively considered as 
personal services for individual consumers. They also present a collective interest. 

taBle 9.1
analyzing Big data solutions against VgI requirements

Big data solutions for Improving Interoperability, discovery, analysis, and Interpretation of 
Big VgI

Interoperability discovery and analysis Interpretation

Standardization of information 
models and service interfaces: 
more difficult to impose on 
VGI than on traditional data

Parallelization and cloud 
computing: potential to 
improve processing capacity.

VGI is noisier than traditional 
data, so improving processing 
capacity does not 
automatically ensure better 
discovery and analysis.

Linked Data (RDF graphs)
Need automated or 
semiautomated techniques to 
generate semantically 
meaningful links
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For example, while routing and navigation services can encourage drivers to choose 
routes that reduce energy consumption, they can also be considered as part of an 
integrated strategy by authorities and civil society to improve energy efficiency and 
to reduce atmospheric pollution.

This vision is partially driven by the emergence of VGI and crowdsourced 
applications, as well as by the increasing number of examples of successful use 
of these new types of data. However, as part of the big data paradigm, VGI and 
crowdsourced data are affected by characteristics that limit their use in routing and 
navigation services. These limitations, which were reviewed in this chapter, have an 
impact on the interoperability of such data, the ability to identify, filter, and retrieve 
relevant data for routing and navigation, and the ability to extract information from 
these data and to analyze and interpret them. Further research will be necessary 
to enable the use of standards for VGI and crowdsourcing applications that will 
facilitate interoperability, to extract from VGI and crowdsourced data the informa-
tion on users’ context and their environment by exploiting big data techniques and 
technologies, to enable the production of temporally detailed roadmaps with cur-
rent conditions and speed on road segments, to improve semantic descriptions and 
processing of VGI and crowdsourced data, and to protect privacy of contributors.
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