
1 Introduction 

Since the ever growth in the need of humanitarian support over 

the worldwide, missing maps project was launched in 2014 by 

American Red Cross, British Red Cross, Humanitarian 

OpenStreetMap Team (HOT) and Médecins Sans Frontières 

(MSF), which aimed at “mapping the most vulnerable places in 

the world” (Scholz et al., 2018). Taking advantages of satellite 

imagery, the mapping task of MapSwipe project is to collect 

volunteered geographical information (VGI), which indicates 

the demanding base map information (human settlements and 

roads) (Albuquerque et al., 2016).  

  VGI platforms, specifically OpenStreetMap (OSM), show 

great potential to support such humanitarian mapping tasks, 

while the availability of VGI data might remain a major 

concern (Barron et al., 2014). Fan et al. (2014) confirmed the 

high completeness and semantic accuracy of OSM building 

features in urban areas of Munich. While the OSM data 

availability in suburban areas mostly remains unrevealed. 

  Recently, deep learning methods, in particular, deep neural 

networks (DNNs), have been successfully employed for remote 

sensing tasks (Zhu et al., 2017), such as land cover 

classification, semantic segmentation, and object detection. 

However, the insufficiency of training samples is still one 

performance bottleneck of DNNs. OpenStreetMap has been 

believed as a powerful data source in providing massive and 

freely accessible geographic information, which can serve as a 

myriad of ground truth labeled samples for training. Mnih and 

Hinton (2012) successfully labeled satellite image with OSM 

vector data of streets and trained DNNs models for pixel-level 

street segmentation. In Kaiser et.al (2017), OSM was employed 

as training samples and compared with manual labels in 

semantic segmentation networks of buildings and roads. In 

Chen et.al (2018), an active learning framework named MC-

CNN was proposed to incorporate multiple VGI data for 

humanitarian mapping in Malawi. Based on the 

aforementioned work, one interesting finding is that the sheer 

amount of VGI based training data could significantly 

compensate for their uneven quality and accuracy.  

  There is a rising trend in taking advantages of OSM data to 

boost the object detection performance of DNNs. However, 

little work has been contributed towards estimating OSM 

missing areas utilizing pre-trained DNNs.  In this study, we aim 

to address the research question as follows: 

 

  RQ: By fine-tuning pre-trained DNNs utilizing current OSM 

building data, to what degree can we estimate large-scale OSM 

missing built-up areas, which deserved further detailed 

mapping by volunteers? 

 

  We evaluate our proposed method in a case study of Tanzania 

and compare to state-of-art baseline data sets. 
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Abstract 

  Although built-up areas cover only a small proportion of the earth's surface, these areas are closely tied to most of the world's population and the 

economic output, which makes the mapping of built-up areas a vital challenge. Thanks to the generous contribution of volunteers, OpenStreetMap 

shows great capability in addressing this challenge, while the missing of maps is still a major concern. In this study, we propose a built-up areas 
mapping method by fine-tuning pre-trained deep neural networks, which aims to estimate OpenStreetMap missing built-up areas in a large-scale 

humanitarian mapping scenario. Specifically, we train an object detection network using very high resolution satellite images and corresponding 

OpenStreetMap building features. Then, we employ task-level labeling algorithms to produce the built-up estimation results and compare their 
accuracy performances with state-of-art baseline data sets. Considering the model transferability during scaling up to larger areas, we select two 

geographical independent areas in north Tanzania, Africa, for training and testing, respectively, where finished MapSwipe projects are available. 

Experiment results confirm that the pre-trained networks could yield high quality built-up maps and competitive estimation performances, which 
lead to over 75% of missing areas detection and over 92% of estimation overall accuracy. 
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2 Data and Methods 

We collect our experiment data from two areas in north 

Tanzania, Africa as the train and test areas in this study (Figure 

1). Both areas have high levels of girls being subjected to 

female genital mutilation (FGM) and child marriage. In order 

to help NGOs to plan and implement outreach activities over 

this region, several MapSwipe mapping campaigns have been 

organized to collect VGI data of human settlements. In 

addition, it is necessary to notice the geographical 

independence of train and test areas, since the assumption is 

that few prior knowledge is available in the test area, which 

could be the most case in humanitarian mapping campaigns.  

 

Figure 1: Overview of train and test area in Tanzania, Africa. 

 
Source: OpenStreetMap and Mapbox. 

 

2.1 Data sets 

In this study, all satellite image tasks have been collected by 

requesting tile map service (TMS) from Bing satellite image at 

zoom level 18, which corresponds to the spatial resolution of 

roughly 0.6 meters. The size of all image tasks is 256*256 

pixels. 

  Figure 2 shows examples of OSM based training samples. We 

extract the bounding boxes of OSM features with the Tag of 

“building”, then label the corresponding images (For our object 

detection DNNs, object bounding boxes are required). The train 

area contains in total 19,256 tasks, while 3,574 tasks intersected 

with valid OSM building geometries (20,380 individual 

geometries) have been included as training samples.  

 

Figure 2: Examples of training samples 

 
 

  As for the test area, it contains in total 17,052 tasks, which 

covers approximately 417.77 km2 rural areas. Since we aim to 

estimate the missing built-up areas in task-level, the reference 

data set considers not only the current OSM geometries but also 

an additional expert validation procedure. To be more specific, 

for tasks those do not intersect with any OSM geometry, a 

complementary crowdsourcing has been done by expert 

volunteers to validate whether the task contains at least one 

building. Therefore, this procedure provides us with a reliable 

reference.  

  In addition, we consider the MapSwipe mapping result, the 

Global Urban Footprint (GUF), and the High Resolution 

Settlement Layer (HRSL) as state-of-art baselines data sets in 

order to evaluate the estimation performance. The GUF has 

been derived automatically from TanDEM-X and TerraSAR-X 

radar images by the German Aerospace Center (DLR) (Esch et 

al., 2013). The HRSL consists of built-up areas generated from 

high resolution commercial satellite imagery by the 

Connectivity Lab at Facebook (Tiecke et al., 2017). The 

crowdsourced baseline of MapSwipe mapping results has been 

obtained using MapSwipe Analytics API (Heidelberg Institute 

for Geoinformation Technology. (2018)). 

 

2.2 Methods 

In this study, we propose a built-up areas mapping method 

based on pre-trained object detection DNNs (Figure 3). Our 

method intends to learn a robust building detection model from 

available OSM building features, which should be able to yield 

reliable prediction results even on independent test areas. 

Furthermore, the DNNs detection results are then employed for 

OSM missing built-up areas estimation purpose.  

 

Figure 3: Workflow  

 

 
 

  For object detection DNNs, we select the Faster R-CNN (Ren 

et al., 2015) as a basic model. Since the heterogeneity of 

training samples is of crucial importance for robust 

generalization capability of DNNs, we consider initializing our 

Faster R-CNN with pre-trained hyperparameters on Microsoft 

COCO data set (Lin et al., 2014). Based on the OSM building 

features and satellite images, we then fine-tune the pre-trained 

Faster R-CNN model to detect only buildings. The raw 

prediction output would be a list of prediction bounding boxes 

together with confidence scores (Equation 1) for each 

individual task, which refers to the spatial coordinates and 

probability values of detected buildings. The implementation 

of pre-trained Faster R-CNN and the fine-tuning procedure are 

based on Python 3.6 and Tensorflow Object Detection API. 

 

{𝑃𝑡𝑟𝑎𝑖𝑛
𝑖 = (𝑟1
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              {𝑃𝑡𝑒𝑠𝑡
𝑗

= (𝑠1
𝑗
, 𝑠2

𝑗
, 𝑠3

𝑗
… )|𝑗 = 1,2, . . , 𝑚}            (1) 

 



AGILE 2019 – Limassol, June  17-20, 2019 

 

Where 𝑛, 𝑚 refer to the number of train and test image tasks, 

and 𝑟𝑖 , 𝑠𝑗   denote to the confidence scores for train and test 

prediction objects, respectively. 

  Until here, the DNNs results in instance-level building 

detection, which already shows great potential in fine-grained 

building mapping. However, the first priority of humanitarian 

mapping is to identify task-level built-up areas, which would 

be further considered for detailed mapping in OSM. To achieve 

task-level classification, we modify the basic model with an 

additional task-level labeling algorithm (TLA).  

  Given the confidence scores (𝑃𝑡𝑟𝑎𝑖𝑛
𝑖  and 𝑃𝑡𝑒𝑠𝑡

𝑗
) in Equation (1), 

TLA learns a classifier to generate the binary label of each task. 

In this study, we design a threshold transferring algorithm 

(TTA) as shown in Equation (2).  

 

      𝐿𝑡𝑒𝑠𝑡
𝑗

= {   1   𝑖𝑓 max (𝑃𝑡𝑒𝑠𝑡
𝑗

) ≥ 𝜃𝑡𝑟𝑎𝑖𝑛        

0  𝑒𝑙𝑠𝑒.                                         
  (2) 

 

Where 𝐿𝑡𝑒𝑠𝑡
𝑗

 refers to the label of each test image task, and 

max (𝑃𝑡𝑒𝑠𝑡
𝑗

) is the corresponding probability value of positive 

built-up. 

  By learning an optimum threshold 𝜃𝑡𝑟𝑎𝑖𝑛 from the train area, 

we directly implement this threshold in the test area. Here, we 

optimize this threshold for the highest F1 score. To evaluate the 

transferring performance, we consider two variants of TLA for 

comparison: (1) TTA by using the optimal 𝜃𝑡𝑒𝑠𝑡 learned from 

test area TTA_𝜃𝑡𝑒𝑠𝑡 ; (2) K-means clustering binary labeling 

strategy (Lloyd (1982)). 

  To sum up, the proposed method enables us to map built-up 

areas in an unknown test area without any further training. The 

crowdsourcing workflow used in MapSwipe relies on the 

volunteer contribution to aggregate built-up labels, therefore, 

the data quality and mapping speed cannot be well controlled. 

In our case, the Faster R-CNN+TLA could be regarded as a 

machine volunteer, who gives consistent mapping results and 

keeps mapping without feeling tired. More importantly, we 

further exploit the potential of estimating OSM missing built-

up area based on the machine-mapped results. 

 

3 Experiments and Results 

3.1 DNNs Building Detection  

For Faster R-CNN, we employ the Inception V2 (Szegedy et 

al., 2016) as our base network and all parameters pre-trained in 

Microsoft COCO data set (Lin et al., 2014). Then, the fine-

tuning procedure is run for 50,000 epochs with the initial 

learning rate of 0.00002 and a momentum value of 0.9. As for 

all TLA, a grid search is adopted to find the best threshold. To 

assess the performance of building detection, we consider the 

metrics precision, recall, f1 score, kappa coefficient (Cohen 

(1960)), overall accuracy (OA), as well as the numbers of false 

negatives (FN), false positives (FP), true negatives (TN), and 

true positives (TP). TTA_𝜃𝑡𝑒𝑠𝑡  and k-means denote to two 

variants of TLA. 

  Table 1 shows the detailed mapping performance of three 

variants of the proposed method in comparison to current OSM 

data (OSM_Raw). The reference data is further validated based 

on current OSM data, so it consequently yields the highest 

Precision value. To this end, the FN of OSM Raw data reveals 

the fact that 2,356 tasks are actually missing build-up areas, 

thus need further detail mapping. Aiming at automatic building 

detection, the proposed method could decrease the FN to below 

600 tasks, which successfully detects over 75% of missing 

areas. Regarding recall, k-means variant leads to the highest 

value of 90.32%, while it also produces the most FP number of 

1,051. It is easy to understand that by giving more positive 

predictions, one could result in higher Recall. Otherwise, 

higher precision, kappa coefficient as well as f1 score are 

achieved utilizing two TTA variants, which further confirms 

the effectiveness of the parametric TTA variants. 

  Due to the imbalanced distribution of building tasks in our 

study areas, it is obvious that most tasks are classified into no 

building class, therefore lead to general high Accuracy of over 

85%. Therefore, the improvement of OA is less significant. 

  Figure 4 demonstrates the confusion maps of the proposed 

method as well as OSM Raw data. By filling most missing 

areas of current OSM data, it is believed that the Faster R-

CNN+TLA could effectively map large-scale areas and 

produce high quality built-up areas maps in task-level, which 

ensures further accurate estimation of current OSM missing 

areas. 

Figure 4: Confusion Maps 

 

Table 1: Detection Performance 

Method 
OSM 

Raw 

Faster R-CNN 

TTA 
TTA 

𝜃𝑡𝑒𝑠𝑡 
k-means 

TP 2,218 4,048 3,994 4,131 

FP 0 838 756 1,051 

TN 12,362 11,524 11,606 11,311 

FN 2,356 526 580 443 

Precision 100.00 82.85 84.08 79.72 

Recall 48.49 88.50 87.32 90.32 

F1 score 65.31 85.58 85.67 84.69 

Kappa 0.58 0.80 0.80 0.78 

OA 86.09 91.95 92.11 91.18 
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3.2 Missing Areas Estimation 

As a common challenge during managing new humanitarian 

mapping campaigns, it is extremely difficult to estimate the 

demanding of volunteer effort to complete an entire campaign 

(Mark (2018)). In this context, our proposed method aims at 

addressing this challenge by providing task-level estimation 

results, which indicates the geographical location and area 

amount of OSM missing built-up areas. Then, such areas 

should be priorities for future detailed mapping by volunteers. 

Since our target is the built-up areas that are missing in OSM, 

we first exclude the OSM mapped areas, and then calculate the 

estimation accuracy on the rest. Specifically, the additional 

evaluation metrics consist of the numbers of over-estimations 

(OE), under-estimations (UE). 

 

Figure 5: Estimation Maps 

 

  As shown in Table 2, our proposed method significantly 

outperforms to the GUF and HRSL in detecting built-up areas, 

and successfully achieves a similar estimation performance 

comparing to the crowdsourced MapSwipe results. Although 

MapSwipe still reports the highest values of F1 score and OA, 

the crowdsourced results heavily rely on the intensive 

contribution of volunteers, which makes it impossible to 

estimate the demanding volunteer effort before or during 

mapping campaigns. Otherwise, it is still optimistic to consider 

fully automatic workflow and supplanting volunteers by 

DNNs, so our future efforts would focus on how to integrate 

crowdsourcing and deep learning in order to develop more 

efficient mapping workflow.    

   From the visual interpretation of Figure 5, it is obvious that 

neither HRSL nor GUF yields satisfying estimation maps in the 

rural area with heterogeneous building structures. This fact 

further confirms the effectiveness of our proposed method in 

underrepresented rural areas. Besides, one may notice the 

different error distributions between crowdsourced MapSwipe 

and our proposed method. For instance, there is an apparent 

band cluster of OE in the lower left part of MapSwipe, while 

the OE of the proposed method tends to be randomly 

distributed. The possible reasons could be undesired volunteer 

behaviors and satellite image quality issues. In general, the 

Faster R-CNN+TLA method is relatively independent of 

artificial disturbing factors, therefore could scale much better 

than volunteer contributions. 

 

4 Conclusion  

In this study, we propose the Faster R-CNN+TLA method to 

estimate OSM missing built-up areas in a case study of 

Tanzania. Firstly, fine-tuned on very high resolution satellite 

images and corresponding OSM training samples, the proposed 

method could generate accurate built-up areas maps. The 

preliminary results in Tanzania show that our method could 

significantly reduce the missing building tasks by over 75% and 

achieve around 85% F1 score. Next, we evaluate the estimation 

performance of the proposed method regarding OSM missing 

built-up areas, which leads to competitive estimation results 

(over 92% OA) in comparison to the crowdsourced MapSwipe 

baseline. With respect to the RQ, it is worthwhile to develop a 

machine volunteer collaborating workflow by combining both 

methods, especially when considering large-scale estimation in 

heterogeneous regions. 

  More importantly, we intentionally select independent train 

and test areas in order to develop robust and transferable DNNs, 

which could be easily implemented to unmapped areas. 

Nevertheless, the transferring capability of DNNs deserves 

Table 2: Estimation Performance 

Method    HRSL     GUF MapSwipe 

Faster R-CNN 

TTA 
TTA 

𝜃𝑡𝑒𝑠𝑡 
k-means 

OE 4278 5 748 838 756 1051 

UE 118 2302 92 173 200 127 

Precision 34.35 91.53 75.17 72.26 74.04 67.96 

Recall 94.99 2.29 96.10 92.66 91.51 94.61 

F1 score 50.45 4.47 84.35 81.20 81.85 79.10 

OA 70.13 87.33 94.29 93.13 93.50 92.00 

 



AGILE 2019 – Limassol, June  17-20, 2019 

 

further study. In the future, we would include more study areas 

and adopt different pre-trained DNNs. We would also 

investigate the factors that may affect the model transferability, 

such as population density, land use land cover, and 

geographical terrain.  

  Towards integrating deep learning methods into the 

crowdsourcing applications for more intelligent workflow, our 

DNNs based method provides important insights into various 

applications. For instance, the accurate estimation of missing 

built-up areas could help project managers to make better plans 

before starting a new campaign. Moreover, the integration of 

machine-generated and crowdsourced data might significantly 

accelerate the mapping procedure while achieving similar or 

even higher accuracy as crowdsourcing workflow. The detailed 

workflow would be investigated in future work. 
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