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Abstract

I propose a new mechanism for the provision of public goods. The mechanism gives
all agents the possibility to condition their contribution on the total level of contribu-
tion provided by all agents. The mechanism does not require an institution that has
the power to enforce participation and/or transfer payments. The mechanism is par-
ticularly suited for repeated public good environments. Under a reasonable variant of
Better Response Dynamics all equilibrium outcomes are Pareto e�cient.
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1 Introduction

Numerous mechanisms have been developed in an attempt to solve the free-rider problem in

public good scenarios. However, all those mechanisms were developed with a static solution

concept in mind. Yet, Healy (2006) shows that in repeated public good environments agents'

actions can be well described by a dynamic better response behavior. This paper therefore

presents a new mechanism that achieves high contribution levels under an adjusted better

response dynamic.

In this mechanism agents can free-ride and contribute unconditionally as in the voluntary

contribution mechanism. Moreover agents have the possibility to conditionally contribute. In

the most simple environment contribution is binary and agents' utility from the public good

increases linearly with the level of the public good. In this environment an o�er of conditional

contribution has the form �I am willing to contribute, if at least k agents contribute in total�.

The mechanism then chooses the highest possible level of total contribution that satis�es all

those conditions.

Under Better Response Dynamics agents switch only to messages with positive probability

that make them weakly better o� if nobody else switches as well. In the proposed mechanism

all agents are indi�erent between a lot of their messages. Thus, Better Response Dynamics

are not su�ciently restrictive for the dynamic process to converge to any equilibria.

However, the conditional contribution structure of the mechanism makes some better

responses more plausible than others in the long term. Assume that in a setting with 5 agents

all 5 agents contributed in the last couple of periods. Since all agents have the option to free-

ride every agent has to prefer this outcome to the outcome in which nobody contributes. And

all agents know this. Thus, what incentive could any agent have to condition his contribution

on less than full contribution?

As long as all agents condition on full contribution nobody will have an incentive to deviate

from this behavior. However, if too many agents choose low conditions the remaining agents

can exploit this by free-riding. And the agents choosing low conditions will be worse o�.

2



Those kind of messages, which increase other agents incentives to free-ride, shall be called

exploitable.

More precisely a message is called exploitable if it makes an outcome possible in which the

agent has to contribute, but is worse o� than in the current outcome. The formally proposed

solution concept, Unexploitable Better Response Dynamics, assumes now that agents only

choose strategies which are better responses and not exploitable. It is not necessary that

all agents choose unexploitable messages. A small subgroup of agents is usually enough to

stabilize an equilibrium.

The central result of the binary model is that an outcome is an equilibrium outcome of

the proposed mechanism under Unexploitable Better Response Dynamics if and only if it is

Pareto optimal and a strict Pareto improvement over the outcome with zero contribution.

The rest of the paper generalizes the environment. First to non-binary contributions,

where the mechanism needs to be adjusted. However, the general idea of o�ering agents

the options to free-ride, conditionally contribute, and unconditionally contribute remains

unchanged. In this environment the equilibrium results remain unchanged.

Second, the environment is further generalized to cover weakly monotonic increasing in-

stead of linear valuation functions. In this case Pareto optimality will not be enough to

ensure that an outcome is part of a recurrent class. Since utility gained from the public good

increases no longer linearly with the contribution towards the public good, there might now

be coalitions of agents who bene�t from reducing their own contributions even if all other

agents then contribute nothing any more. In this environment an outcome is an outcome of

a recurrent class of the mechanism under Unexploitable Better Response Dynamics if and

only if it is in the core and any deviation of a coalition from this outcome makes at least

one agent in that coalition strictly worse o�. This holds if at least one such outcome exists.

Existence can however be guaranteed by adding only in�nitesimal monetary incentives.
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1.1 Related Literature

This work relates in particular to three branches of the literature. The �rst one is given by

work on mechanisms to increase contributions to public goods. The earliest work dates back

to Lindahl (1919). However, his pricing system turned out to be not incentive compatible.

The most prominent incentive compatible mechanisms were then designed by Clarke (1971)

and Groves and Ledyard (1977). More recent advances are the Jackson-Moulin mechanism

(Jackson and Moulin, 1992) or the Falkinger mechanism (Falkinger et al., 2000). However,

all those mechanisms have their own draw-backs. Some e.g. require participation to be

enforceable, or a high level of information about other agents preferences to reach the desired

equilibrium.

Second there are experimental studies on public good provision. For a general survey I

refer to Ledyard (1994), or the more recent surveys of Chen (2008) and Chaudhuri (2011). As

already mentioned the studies of Fischbacher et al. (2001) and Kocher et al. (2008) show that

agents have preferences for conditional cooperation. Further there are certain papers that

compare the performance of the Voluntary Contribution Mechanism (VCM) experimentally

to the performance of other simple public good mechanisms. Two mechanisms have been

found to be able to increase contributions at least in some situations. The auction mechanism

by Smith (1979, 1980) and the Provision Point Mechanism (PPM) studied e.g. in Rondeau

et al. (1999, 2005). Those mechanisms have in common that they use a sharp discontinuity

to prevent the incentives of free-riding. This discontinuity however is exogenously given.

The Conditional Contribution Mechanism makes use of discontinuities, too. However, those

discontinuities now depend on other agent's messages, thus they are no longer exogenously

given, but endogenized.

The third branch of the literature focuses on Better Response Dynamics in mechanisms. I

already mentioned that Healy (2006) provides experimental evidence that agents' behavior in

public good mechanisms can be well described by a better response model. The importance

of Better Response Dynamics in mechanisms is further highlighted by the recent introduction
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of Better Response Dynamics into the implementation literature by Cabrales and Serrano

(2011).

1.2 Plan of the paper

The remaining sections are structured as follows. In section 2, I introduce the Binary Con-

ditional Contribution Mechanism in the simplest possible setting. Valuations are linear and

contribution to the public good is binary. Section 3 introduces Unexploitable Better Response

Dynamics and the outcomes of recurrent classes of the BCCM under UBRD are calculated.

Section 4 removes the assumption that contributions are binary and introduces the Condi-

tional Contribution Mechanism. In Section 5, the assumption of linear valuations is replaced

with the weaker assumption of weakly increasing valuation functions. Section 6 provides a

summary and discussion of the results. Proofs to all theorems can be found in the Appendix.

2 The Binary Conditional Contribution Mechanism

I consider a public good environment in the following form. All n ∈ N agents labeled i are

considered to have one monetary unit available in each period, which they can either keep

or invest in one unit of the public good. An outcome is then de�ned as z = (z1, ..., zn) with

zi ∈ {0, 1}, ∀i ∈ I := {1, . . . , n}, where zi = 1 is interpreted as agent i investing his monetary

unit into the public good and zi = 0 represents agent i keeping his monetary unit for himself.

For notational convenience de�ne z = (0, . . . , 0).

Further, all agents i ∈ I have a valuation θi ∈ [0, 1) for the public good.1 Utility of agent

1Values θi < 0 are excluded, since then the public good would be a bad for those agents. If this were
the case a mechanism that does not use transfers can never guarantee Pareto improvements. Thus the
mechanism proposed in this paper should only be applied if valuations of the public good of all agents are
weakly positive. Values θi ≥ 1 are excluded for simplicity of notation. Any agent with θi ≥ 1 has a weakly
dominant strategy to contribute the entire endowment to the public good. Thus, there is no need to provide
additional incentives to this kind of agents. Therefore, including the possibility of θi ≥ 1 would not lead to
a signi�cant change in any results of the paper, but would complicate notation at several points.
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i is then given by a quasilinear utility function of the form

ui = 1− zi + θi

n∑
j=1

zj. (1)

Valuations θi are further assumed to be such that some outcome z exists, which is a strict

Pareto improvement over z for all agents i, who contribute in z. This assumption ensures

that some strict improvement over z is possible.2

2.1 The Mechanism

In the Binary Conditional Contribution Mechanism (BCCM) (MBCCM , gBCCM) every agent

can choose a natural number between 1 and n + 1. Thus the message space is de�ned as

MBCCM =
∏n

i=1M
BCCM
i , with MBCCM

i := {1, 2, . . . , n + 1}, ∀i ∈ I. The chosen message

is thereby interpreted in the following way: Choosing message mi = k is like saying: �I'm

willing to contribute to the public good if at least k agents (including myself) contribute in

total.� Note that with the messages mi = 1 and mi = n+ 1 players can decide to contribute

in any or no case, respectively.3

The outcome selected by the mechanism is then outcome with the highest possible level

of contributions such that all those statements are satis�ed. Formally, de�ne

K(m) := max{k ∈ {0, 1, ..., n}|
n∑
i=1

1(mi≤k) ≥ k}. (2)

The outcome of the mechanism is de�ned as gBCCM(m) = z with zi = 1 if and only if

mi ≤ K(m).4

2If this were not the case, any Pareto improvement would rely on some agent's contribution, who is
indi�erent between this Pareto improvement and z. No mechanism with the desired properties can be asked
to provide strict incentives to contribute for this agent in such an environment. Thus such cases are not
considered in the equilibrium analysis.

3Since there are only n agents, there can never be n+ 1 contributing agents.
4In equation (2) 1(mi≤k) denotes the indicator function, which is 1 if mi ≤ k and 0 otherwise.
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2.2 Nash equilibria of the BCCM

The BCCM has multiple Nash equilibria. An example shall demonstrate what properties an

outcome must have to be a Nash equilibrium outcome.

Example 2.1 Consider 5 identical agents with valuation θi = 0.4 ∀ i ∈ I. The trivial Nash

equilibrium is given by mi = 6, ∀ i ∈ I, where no agent contributes to the public good.

However, there are more equilibria as e.g. when agents 1, 2 and 3 choose message mi = 3

and agents 4 and 5 choose mi = 6. In this case the �rst three agents will contribute to the

public good: z = (1, 1, 1, 0, 0). The structure of the mechanism makes this an equilibrium.

Agents 4 or 5 can deviate only to z = (1, 1, 1, 1, 0) or z = (1, 1, 1, 0, 1) respectively, which is

not bene�cial. And the �rst three agents can only deviate to z, which is not bene�cial, either.

Thus, no agent has any incentive do deviate.

The incentive structure in the example can be generalized. For any outcome there is a

message pro�le that limits the options of agents to the following ones: Agents that currently

do not contribute can only alter the outcome by unilaterally contributing themselves, which

makes them worse o�. Agents that currently contribute can only change the outcome to z.

This indicates that a certain outcome can be implemented as a Nash equilibrium if and only

if there is no agent for which the deviation to z is pro�table.

Theorem 2.2 z is the outcome of a Nash-equilibrium of the BCCM if and only if

z �i z, ∀ i ∈ I.

Thus, Nash equilibrium does not make a clear prediction as to the equilibrium outcome of the

mechanism. Nor does it predict the e�ciency of equilibrium outcomes. Therefore, a suitable

re�nement of the Nash equilibrium concept is needed.
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3 Unexploitable Better Response Dynamics

The last section demonstrated the lack of predictive power of the Nash equilibrium concept

for the outcome of the proposed mechanism. Furthermore, as mentioned in the introduction,

Better Response Dynamics have been found to describe agents' behavior in repeated public

good games rather well ((Healy, 2006)). Thus, this section's focus is on Better Response

Dynamics as a solution concept. In the following I demonstrate why simple Better Response

Dynamics can not be used for the proposed mechanisms. And I motivate a variant of Better

Response Dynamics that will be used instead.

Better Response Dynamics assume that a mechanism is played repeatedly by the same

agents over a �nite or in�nite number of periods t. In any period one or more agents are

allowed to adjust their message. Agents deviate with positive probability from their current

message mt
i to any message mt+1

i that is a better or best response to mt. A recurrent class of

such a dynamic concept is a set of message pro�les, which if ever reached by the dynamics is

never left and which contains no smaller set with the same property. If such a recurrent class

consists of a single message pro�le it is called an absorbing state. The equilibrium outcomes

of Better Response Dynamics are de�ned as all outcomes of their recurrent classes.

However, when mt
−i is �xed, all messages in the BCCM of agent i will lead to only two

possible outcomes. This implies that agents will myopically be indi�erent between most of

their messages. A dynamic adjustment process that only considers myopic better or best

response behavior will then have the entire strategy space as its only recurrent class. Thus

simple Better Response Dynamics are not restrictive enough as a solution concept.

I propose to combine the myopic better response condition with a second condition on

behavior that is less myopic. Consider the following example.

Example 3.1 Assume there are 5 identical agents all with type θi = 0.4. Assume that

currently 4 agents contribute to the public good. The message pro�le could e.g. be mt =

(4, 4, 3, 3, 6). In this case agents 1 through 4 contribute to the public good. Consider now
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agent 1. Any message mt+1
i ∈ {1, 2, 3, 4} is a better response for agent i to the message pro�le

mt. None of those messages would change the outcome if no other agent changes his message

at the same time. However, the message mt+1
1 = 3 gives agent 2 an incentive to deviate to

mt+2
2 = 6 in the following period. Under the new message pro�le mt+2 = (3, 6, 3, 3, 6) only

agents 1, 3 and 4 would contribute to the public good making those agents worse and agent

2 better o�. The same would be true for the messages mt+1
1 = 2 and mt+1

1 = 1. Messages

mt+1
1 ∈ {1, 2, 3} can thus be exploited by agent 2 in a later period, making agent 2 better o�

and agent 1 worse o�. The special structure of the mechanism makes it possible for agents

to prevent this kind of incentives for exploitation without having to free-ride themselves.

From a strategic perspective the exploitable messages in the example provide other agents

with incentives to deviate to less cooperative messages. Thus, not choosing those messages

can be interpreted like a second order better response behavior. Agents assume that other

agents better respond to the message pro�le and choose of their own better responses the

ones that are strategically optimal. There are more arguments that rationalize this behavior.

It is easier, however, to provide those arguments once the term �exploitable� and with it

Unexploitable Better Response Dynamics are precisely de�ned.

De�nition 3.2 Given a message pro�le m and an outcome g(m) = z, a deviation from mi

to m′i is called exploitable if ∃ m−i ∈ M−i : z′(m−i) = g(m′i,m−i) ≺i z and z′i(m−i) > 0. A

message m′i is called unexploitable, if it is not exploitable.

In the following the assumptions of better responding and unexploitability are combined to

one behavioral model.5

De�nition 3.3 In Unexploitable Better Response Dynamics (UBRD) all agents can adjust

their message in every period. Agent i switches in period t to message mt
i with strictly positive

probability if and only if

5Such a model must further specify whether only one or all agents can change their message in a given
period. The latter seems more reasonable for most applications (e.g. international environmental agreements).
Thus, I assume in the analysis that all agents can adjust their message every period.
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• mt
i is a (weak) better response to mt−1 and

• mt
i is unexploitable with respect to zt−1 := gBCCM(mt−1).

Revisit the example from above with this de�nition in mind.

Example 3.4 Assume there are 5 identical agents all with type θi = 0.4. Let the current

message pro�le be m = (6, 6, 6, 6, 6). In this case no agent contributes and the outcome is

z. Therefore a message is exploitable in this case if it makes outcomes possible in which an

agent is worse o� than in z. Those messages are only mi = 1 and mi = 2. Both messages are

weakly dominated by mi = 3. Thus, when the current outcome is z a message is exploitable

if and only if it is weakly dominated.

Therefore, unexploitability can be summarized by two assumptions. First, if agents did not

yet coordinate on any Pareto improvements, agents do not send weakly dominated messages.

Second, once agents coordinated on a positive level of contributions, they do not choose

messages that set incentives for other agents to free-ride on their contribution.

Furthermore, it is not necessary that all agents behave in an unexploitable way. If a

large enough subgroup of agents behaves according to UBRD, while the rest of the agents is

just better responding, the equilibrium outcomes will be as e�cient as if all agents behaved

according to UBRD. To get an intuition for this consider again an example.

Example 3.5 Assume there are 5 identical agents all with type θi = 0.4. Let the current

message pro�le bem = (5, 5, 5, 1, 1). In this case only agents 1 through 3 send an unexploitable

message. Nevertheless neither of the agents can strictly bene�t from any deviation. Although

agent 4 and 5's messages are exploitable any attempt to exploit those agents would leave only

agents 4 and 5 contributing. Thus total contribution to the public good would go down by 3.

This makes all agents worse o�. Thus in this example it is su�cient if 60% of agents behave

according to UBRD to support full cooperation.
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3.1 Equilibrium properties of the BCCM under UBRD

Under the stated assumptions agents will learn over time not to choose messages which make

them worse o�. And they will learn to choose messages that make exploitations of their

contribution o�ers impossible. The combination of those assumptions makes Nash equilibria

stable if and only if they are Pareto optimal and no agent would be equally well or better o�

in z. The rest of the paper we uses the following de�nition to simplify notation.6

De�nition 3.6 z′ is a strict∗ Pareto improvement over z, if and only if z′ is a Pareto

improvement over z, which is strict for all agents with type θi 6= 0.

With this de�nition we can prove the central result for the binary model.

Theorem 3.7 An outcome z ∈ Z is an outcome of some recurrent class of the BCCM under

UBRD if and only if it is a Pareto optimal outcome and a strict∗ Pareto improvement over

z.

Let me again provide an example to improve the intuition for this result:

Example 3.8 Consider a case with 5 identical agents all with type θi = 0.4. The theorem

predicts that all outcomes in which 3,4, or 5 agents contribute to the public good are outcomes

of recurrent classes of the BCCM. Those outcomes have in common that they are Pareto

e�cient in a non-transferable utility setting. Assume for example that the current message

pro�le is m = (4, 4, 4, 4, 6). Then agents 1 through 4 contribute to the public good, while

agent 5 does not. Thus the outcome is z = (1, 1, 1, 1, 0). For agent 5 any deviation will

have him contribute to the public good and would thus not be a better response. For agents

1 through 4 messages mi ∈ {5, 6} would lead to the outcome z. They are thus not better

responses either. Messages mi ∈ {1, 2, 3} however make outcomes possible in which the agent

6When there are agents with a valuation of θi = 0 many mechanisms are no longer individually rational.
It is thus important to include this case to demonstrate that the BCCM can handle it. However, agents who
do not pro�t from the public good can never be strictly better o� than in z. Thus I de�ne a version of the
property strict, that excludes those agents.
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has to contribute, but total contribution is less than 4. Thus those messages are exploitable.

Therefore, the given message pro�le is a steady state of UBRD.7

4 Non-binary Conditional Contribution Mechanisms

The environment can be generalized to a setting in which contribution is not binary, while

keeping the mechanism similar. Assume that every agent can invest any amount between 0

and 1 into the public good. Because it is closer to reality and it keeps the dynamic analysis

simpler, I assume a smallest indivisible monetary unit of 0.01.8

The BCCM can be adjusted to this environment in a very natural way. However, this

natural extension turns out to have equilibria under dynamic considerations, which are not

Pareto optimal. Nevertheless, this failure of the natural extension is an important motivation

for the more complex message space of the Conditional Contribution Mechanism, which will

be introduced afterwards.

The natural extension of the BCCM will assign every agent i the message space: MNEM
i :=

{0, 0.01, . . . , 0.99, 1} × {0, 0.01, . . . , n − 0.01, n}, where mi = (α, β) is interpreted as: �I'm

willing to contribute α to the public good if total contribution is at least β.� For the analysis

in this section I refer to this mechanism as the Natural Extension Mechanism (NEM). The

outcome space is then given by Z := {0, 0.01, . . . , 0.99, 1}n, where zi is the contribution of

agent i to the public good in outcome z. z := (0, . . . , 0) is used as before as the outcome

with no contribution to the public good by anyone. The level of contribution selected by

the mechanism is again the highest level of total contribution such that all conditions are

satis�ed. Formally, let ZNEM(m) ⊂ Z be the set of feasible outcomes for a message pro�le

m,

7In this example the other steady states are given by m′ = (3, 3, 3, 6, 6) and m′′ = (5, 5, 5, 5, 5)
8This discretization resembles the money structure in most countries. All results in the paper hold with

any other �nite discretization as well.
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z ∈ ZNEM(m)⇔ (zi = 0 or (zi = αi and
n∑
j=1

zj ≥ βi)), ∀ i ∈ I. (3)

It is easy to see that z ∈ ZNEM(m) and z′ ∈ ZNEM(m) imply together

z′′ = (max{z1, z′1}, . . . ,max{zn, z′n}) ∈ ZNEM(m). Thus, the outcome of the mechanism is

uniquely de�ned by

gNEM(m) = argmaxz∈ZNEM (m)

n∑
i=1

zi. (4)

4.1 Equilibrium properties of the NEM

The structure of Nash equilibria is similar to the binary case:

Theorem 4.1 An outcome z is an outcome of a Nash equilibrium of the NEM if and only

if z �i z ∀ i ∈ I.

Revisit the example

Example 4.2 Each of �ve agents has type θi = 0.4. Assume z = (0.5, 0.4, 0.3, 0.2, 0.1). Then

z �i z ∀ i ∈ I. This outcome is the outcome of the Nash equilibrium given by mi = (zi, 1.5).

This is a Nash equilibrium since no agent can reduce his contribution without the outcome

becoming z. And neither can any agent by changing his message increase any other agent's

contribution. Thus, the options for unilateral deviations can be reduced to the same cases as

in the binary model.

Unfortunately, the NEM has undesirable equilibria under UBRD as well. The simplest way

to show this is by considering an example.

Example 4.3 Assume again each of �ve agents has type θi = 0.4. Assume further that in

period t all agents sent message mt
i = (0.1, 0.5) and zt = (0.1, 0.1, 0.1, 0.1, 0.1). Let us �nd

all unexploitable better responses in period t + 1. Consider w.l.o.g agent 1. Any message
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m′1 = (α1, β1) with α1 < 0.1 and β1 > α1 will lead to z and is thus not a better response. Any

message m′1 = (α1, β1) with α1 < 0.1 and β1 ≤ α1 will lead to z = (α1, 0, 0, 0, 0) and is thus

not a better response, either. Any message m′1 = (α1, β1) with α1 > 0.1 and β1 > 0.4 + α1

will lead to z and is thus not a better response. Any message m′1 = (α1, β1) with α1 > 0.1 and

β1 ≤ 0.4 + α1 will lead to z = (α1, 0.1, 0.1, 0.1, 0.1) and is thus not a better response, either.

This leaves only messages with α1 = 0.1. However of those messages the ones with β1 > 0.5

lead to z and are not a better response and the ones with β1 < 0.5 are exploitable. β1 = 0.3

e.g. could lead after deviations of the other agents to m′j = (0.05, 0.3), ∀j ∈ {2, 3, 4, 5} to

z′ = (0.1, 0.05, 0.05, 0.05, 0.05). In this outcome agent 1 is worse o� than in zt but contributes

a strictly positive amount. Thus his message was exploitable. The only unexploitable better

response is thus m′1 = (0.1, 0.5). But this implies that message pro�le mt is an absorbing

state of UBRD. But g(mt) = zt is not Pareto optimal.

Agents can in this way get stuck on Pareto improvements over z which are not Pareto

optimal. Any deviation aiming to make a further Pareto improvements possible would make

the deviating agent worse o� in the next period. And such a deviation is infeasible under a

better response behavior.

This problem can be solved by letting agents announce more than one tuple of the form

(αi, βi). This grants agents a higher �exibility in their strategy giving them the opportunity

to explore Pareto improvements with some tuples, while securing the current level of coop-

eration with one other tuple. As it turns out a message of two such tuples is already enough

to solve the issue. Simplicity is a further desirable feature of mechanisms once practical

implementations are considered. Thus, the mechanism I propose in the following paragraph

lets agents announce exactly two tuples.9

9Depending on the application di�erent versions of the mechanism are possible. The more tuples agents
can send, the more �exible they are. Thus, more tuples could lead to faster convergence. However, more
tuples also make the mechanism more complicated. Therefore, a reasonable version for applications might
be to let agents announce any amount of tuples they choose between one and some upper bound. This gives
agents the simple option of choosing one tuple, while also giving them the option to choose very detailed
messages. This mechanism is from the theoretical perspective identical to the version in the paper. The
paper version is chosen since it simpli�es notation, especially in proofs.
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I call this mechanism the Conditional Contribution Mechanism (CCM): Every agent can

announce two tuples {(α1
i , β

1
i ), (α

2
i , β

2
i )} ∈MCCM

i := MNE
i ×MNE

i . The outcome gCCM(m) of

the CCM is then de�ned as in the NEM as the outcome with the highest level of contribution

consistent with the messages chosen. Let ZCCM(m) ⊂ Z be the set of feasible outcomes for

a message pro�le m:

z ∈ ZCCM(m)⇔ zi = 0 or {∃li ∈ {1, 2} : zi = αlii and
n∑
j=1

zj ≥ βlii }, ∀ i ∈ I (5)

The outcome of the CCM is then uniquely de�ned by

gCCM(m) = argmaxz∈ZCCM (m)

n∑
i=1

zi.
10 (6)

The additional tuple in the message has no e�ect on Nash equilibria, since only one of the

two announced tuples per agent is responsible for the outcome. Such a mechanism can thus

only be found and argued for, when dynamic properties are taken into consideration. The

CCM has indeed the desired positive dynamic properties:

Theorem 4.4 An outcome z′ ∈ Z is an outcome of some recurrent class of the CCM under

UBRD if and only if it is a Pareto optimal allocation z and a strict∗ Pareto improvement

over z.

An example shall provide some intuition for this result.

Example 4.5 Consider the example with 5 agents and complete information. Each agent

has type θi = 0.4. Then in all outcomes of recurrent classes 3 agents contribute their entire

endowment. The two other agents can contribute any amount. Take for example the outcome

z = (1, 1, 1, 0.5, 0.5). This outcome is supported by the messages mi = {(1, 4), (1, 4)} for

i = 1, 2, 3 and mi = {(0.5, 4), (0.5, 4)} for i = 4, 5. The combination of unexploitability and

10The outcome can easily be computed by translating the messages of all agents into step-functions, adding
them up and taking the highest �xed point of the resulting function. This makes sure that there is no problem
in computation, when n is large.
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better responding behavior makes sure that the outcome cannot be left to another outcome

with lower contributions and the unexploitability condition implies further that the outcome

cannot be left to any outcome with higher contributions since either agent 4 or 5 would be

worse o� than in z. Consider for example the message m′4 = {(0.5, 4), (1, 5)}. This deviation

in itself does not change the outcome, thus it is a better response. However if agent 5 also

switches to m′5 = {(0.5, 4), (1, 5)}, the outcome would change to z′ = (1, 1, 1, 1, 1). However

u4/5(z) = 2.1 > 2.0 = u4/5(z
′). Thus, messages m′4 and m′5 are exploitable.11

5 Non-linear valuation functions

In this section I want to drop the assumption that valuations are linear and replace it by a

weaker assumption. Consider a �nite number n of agents with quasi-linear utility functions

ui(wi, wp) = wi +fi(wp), where wi is the private wealth of agent i and wp is the total amount

of wealth invested into the public good by all agents. The functions fi are only assumed to be

weakly increasing in the level of the public good and may di�er across agents.12 Endowment

and outcome space Z := {0, 0.01, . . . , 1}n remain unchanged.13

In this setting Pareto optimality will not be enough to ensure that an outcome is part

of a recurrent class. Since utility gained from the public good increases no longer linearly

with the contribution towards the public good, there might now be groups of agents who

bene�t from reducing their own contributions even if all other agents then do not contribute

anything any more.

In the proofs I use that the options for deviations of coalitions can be limited to outcomes

in which no agent outside the coalition contributes. I call such outcomes enforceable, since

coalitions can't force other agents to contribute. When coalitions' options for deviations are

11Agents 1 through 3 did not actively exploit the messages of agents 4 and 5 in this example. In some
sense these agents exploited each other. However, the important point is that the deviation from z to z′ is
not desirable for agents 4 and 5.

12Note that this includes the cases of agents not pro�ting at all from the public good, or who get satiated
at some level.

13A further generalization to di�erent endowments for di�erent agents only complicates notation. The
mechanism can easily be adjusted by enhancing the message space and all main results would be una�ected.
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limited to their enforceable outcomes, the equilibrium outcomes of the CCM under UBRD

can be captured by the core.

De�nition 5.1 An outcome z ∈ Z is enforceable for a coalition S ⊂ I if and only if zi =

0 ∀i /∈ S. The set of all enforceable outcomes for coalition S shall be denoted ZS

As in the case of Pareto e�ciency I use a standard de�nition of the core for games without

transferable utility as e.g. in (Owen, 1982, p. 293).

De�nition 5.2 An outcome z ∈ Z is in the core if and only if there is no S ⊂ I, S 6= ∅,

and z′ ∈ ZS, such that z′ �i z, ∀ i ∈ S.

Since I already demonstrated that Nash equilibrium does not even uniquely predict the

outcome in the linear case I skip the static analysis and present only the result under UBRD.

As in the previous results there needs to be a strict disincentive for agents to deviate. Since

the outcome space is �nite the usual core de�nition does not guarantee this.

I therefor need a de�nition, which is somewhat stronger than the usual core de�nition to

describe the equilibrium outcomes. Possibilities for deviations under indi�erence need to be

excluded.

De�nition 5.3 A core allocation z is strict∗ for a subset S ⊂ I of agents if for any feasible

outcome z′ of a coalition S ′ with S ′ ∩ S 6= ∅ there exists some agent i ∈ S ′ with z �i z′.

De�nition 5.4 De�ne the subset SC(z) ⊂ I via i ∈ SC(z) if and only if zi > 0 as the set of

agents that contribute a strictly positive amount in z.

Theorem 5.5 Assume there exists at least one outcome z that is a core allocation and strict∗

for SC(z). Then an outcome z′ is an outcome of a recurrent class of the CCM under UBRD

if and only if it is a core allocation that is strict∗ for S(z′).

If no such outcome exists the result would be a cycling behavior of the dynamics. It is

not obvious that the assumption of existence of such an outcome is satis�ed in all relevant
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cases. However, the existence problem only exists on an in�nitesimal level. This is shown,

by proving that the mechanism can be adjusted to guarantee existence at arbitrarily low

expected costs.14

In the following theorem let ∆ be a mapping from Z × I → R+. The interpretation is

that the mapping de�nes for any agent and any outcome some payment ∆(z, i) := δzi that

agent i gets payed if outcome z occurs. I write G + ∆ to describe a mechanism G to which

the additional payments ∆ are added.

Theorem 5.6 For any environment with weakly increasing valuation functions and for any

ε > 0 there exists a mapping ∆ such that in the game CCM+∆ there exists a core allocation

z, which is strict for the subset S(z) of agents with i ∈ S(z) if and only if fi(
∑n

i=1 zi) > 0.

Further, the expected cost of ∆ is less than ε.

6 Summary and Discussion

This paper introduces the class of Conditional Contribution Mechanisms for the provision

of public goods. In these mechanisms agents can condition their contribution on the total

contribution of all agents. The e�ciency of Nash equilibrium outcomes is non distinct.

However, under Unexploitable Better Response Dynamics all equilibrium outcomes turn out

to be Pareto e�cient, in the non transferable utility sense.

The new concept Unexploitable Better Response Dynamics is used in the paper to predict

the outcomes of the mechanisms. Although the concept is close to the standard concept

of Better Response Dynamics and the new unexploitability condition can, besides other

arguments, be related to eliminating weakly dominated strategies, there always remains some

doubt as to the predictive power of a new solution concept. Therefore, experiments with

14Since costs are arbitrarily low I do not want to argue here who should pay those costs. Note though that
in reality costs for setting any such incentives can never be arbitrarily low since the administration costs will
be strictly positive. However the theorem is not meant to "�x the problem in applications" but rather to
show that the problem is likely to have no e�ect in real applications at all. Note further that only expected
costs can be arbitrarily low as the assumption of a smallest monetary unit makes arbitrarily low payments
only possible as lotteries.
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these mechanisms have to be conducted. A �rst experiment with the binary environment is

already �nished and will be published soon in a companion paper. The experimental results

show that the BCCM signi�cantly outperforms the VCM in terms of contribution rates

and Unexploitable Better Response Dynamics is a good predictor for the stable equilibrium

outcomes.

Good dynamic equilibrium properties combined with ambiguous Nash equilibrium prop-

erties indicate that the mechanism might only be suited for repeated public good problems.

However, there are a lot of possibilities to adjust the mechanism for a one-shot game such

that the dynamic properties are used. As one example the mechanism could be played 5 times

with the highest contribution in the �ve trials being used as the outcome. This is close to

the way in which the auction mechanism studied by Smith (1979, 1980) makes coordination

possible. Further, agents could be allowed to communicate prior to the one shot game. This

form of cheap talk communication was already used successfully to increase contributions in

a standard VCM public goods game by Isaac et al. (1985). In the VCM agents have a myopic

incentive to lie about the message they intend to send. In the CCM agents do not have such

an incentive to lie, since failed coordination makes everyone worse o�. Thus, communication

should work even better with the CCM. Finding the best way to adjust the mechanism to

one shot games is an interesting question for further research.

Everything considered, the class of Conditional Contribution Mechanisms is an important

addition to the set of public good mechanisms. It satis�es individual rationality, incentive

compatibility, and leads under UBRD to Pareto e�cient outcomes in repeated public good

environments. Furthermore, in the �nal analysis the only assumption on valuations is that

they are weakly increasing in the level of the public good. Those weak assumptions make

the mechanism applicable in a wide variety of public good settings.
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7 Appendix

General notation: In many proofs I have to show that some outcome z is some sort of

equilibrium. In those proofs I need to distinguish between two subsets of agents. The subset

of agents who contribute to the public good in z, shall be called I1 ⊂ I. And the subset

of agents who do not contribute to the public good in z shall be called I0 ⊂ I. If I need a

second outcome z′ in the proof, those sets will be called I ′1 and I
′
0, respectively.

Proof of Theorem 2.2 Let z be an allocation such that no agent strictly prefers z to z

and de�ne k :=
∑n

i=1 zi. Then the message pro�le mi = k ∀i ∈ I1,mi = n + 1 ∀i ∈ I0 is

a Nash equilibrium with the desired outcome. It is obvious that gBCCM(m) = z. In the

following I show that m is a Nash equilibrium.

If some agent i in I1 deviates to a message m′i < k, the outcome does not change. If he

changes his message to some m′i > k, the new outcome will be z. Since no agent strictly

prefers z to z, this can not make agent i strictly better o�. Thus agents in I1 have no strict

incentive to deviate.

If some agent j in I0 deviates to m
′
j > k + 1, the outcome does not change. If he changes

his message to m′j ≤ k + 1 he will contribute and total contribution will be k + 1. Since

θj ∈ [0, 1) this will make him worse o�. Thus also the agents in I0 have no incentive to

deviate and m is indeed a Nash equilibrium.

Let on the other hand z be an outcome such that any agent i strictly prefers z to z. Let

then m be any message pro�le leading to the outcome z. By choosing the message m′i = n+1

any outcome that might occur is at least as good for agent i as z. Thus i has an incentive to

deviate. Thus m can not be a Nash equilibrium. �

Proof of Theorem 3.7 I prove the theorem in two steps. In step 1 I show that any outcome

with the described properties is an outcome of a recurrent class of the dynamics. In step 2

I show that from any other outcome the dynamics reach such a recurrent class with strictly

positive probability.
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Step1: In the discussion of the environment I assumed that there exists some Pareto

improvement z over z, which is strict for all i ∈ I1. Such a Pareto improvement is further

strict for all agents i with θi > 0.

Let z be any such outcome and let k =
∑n

i=1 zi. Then mi = k if and only if i ∈ I1 and

mi = n+ 1 if and only if i ∈ I0 is part of a recurrent class of UBRD with outcome z. I prove

this by checking that no deviation to a di�erent outcome is compatible with UBRD.

For any agent i ∈ I1 deviations to any mi = k′ > k will lead to the outcome z. Since z is

a strict Pareto improvement over z for those agents this is not a better response. Deviations

to any mi = k′ < k make outcomes possible in which i contributes but total contribution

is less than k. Thus those strategies are exploitable. Thus no agent in I1 will change their

message according to UBRD. If only agents in I0 change their messages total contribution

can only increase. No agent i ∈ I0 will choose any mi = k′ < k + 2 since then this agent

i would contribute. Since θi ∈ [0, 1) agent i would be worse o�. Thus this is not a better

response for agent i.

Assume now that after some deviations of agents i ∈ I0 under UBRD the outcome nev-

ertheless changes from z to z′. Since z was Pareto optimal at least one agent, call him j, is

worse o� in z′ than in z. Since we already noted that no agent in I1 has any incentive to

deviate total contributions are higher in z′ than in z. Thus j ∈ I ′1 or agent j could not be

worse o� in z′. This implies that the messages of agent j that made the change from z to z′

possible was exploitable. Thus, j would not have chosen this message under UBRD. And z

is indeed the outcome of a recurrent class of the UBRD process.

Step2: Take now any outcome z ∈ Z which is not Pareto optimal or not a strict Pareto

improvement over z for all i with θi > 0. Then I distinguish two cases. In case 1 z is Pareto

optimal but not a strict Pareto improvement over z for all i with θi > 0. Then there exists

some agent i, who contributes, but would be better o� by or indi�erent to not contributing

even if this will lead to z. Thus for this agent mi = n+1 is a (weak) better response. Further

mi = n + 1 can never be exploitable. If all other contributing agents chose unexploitable
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messages the switch to mi = n + 1 will lead to the outcome z. From z the dynamics reach

any recurrent class with Pareto optimal outcome z, which is a strict Pareto improvement

for all i with θi > 0 with positive probability. All messages in any such recurrent class are

unexploitable better responses, whenever the current outcome is z.

In case 2 z is not Pareto optimal. Then there exists a Pareto optimal outcome z′, which

is a Pareto improvement over z. Assume that in z′, k′ agents will contribute. Then for those

agents who contribute in z′ but not in z, mi = k′ is an unexploitable better response. Once

all those agents play mi = k′, the outcome switches to z′. Thus the dynamics reach z′ with

positive probability. Now z′ is either a Pareto optimum which is a strict Pareto improvement

over z for all i with θi > 0, or we are in case 1. �

Proof of Theorem 4.1 Let z := (z1, . . . , zn) ∈ Z be an outcome, such that z �i z ∀ i ∈ I,

and de�ne β̄ :=
∑n

i=1 zi. Then mi = (zi, β̄) is a Nash-equilibrium of the mechanism with

outcome z. There are four ways in which any agent i can deviate from this message. He can

increase or decrease his proposed contribution. And he can increase or decrease his condition.

Any decrease in the o�ered contribution will fail to satisfy all other agents conditions and

can thus only lead to outcomes, which are worse for agent i, no matter what condition he

choses.

Any (weak) increase in the o�ered contribution will not lead to an increase of other agents'

contributions. Thus such an increase combined with a condition that can be satis�ed will

only lead to a (weakly) higher contribution by agent i. If the increase in the o�ered condition

is combined with a condition that can not be satis�ed the outcome will be z. In both cases

agent i is (weakly) worse o�.

Let now z ∈ Z be an outcome such that some agent i strictly prefers z to z. Given any

message pro�le leading to the outcome z agent i can pro�tably deviate to mi = (0, 0). This

gives him an outcome which is at least as good as z and thus strictly better than z. �

Proof of Theorem 4.4 I prove this theorem in two steps. In step 1 I prove that the de-

scribed outcomes are indeed outcomes of recurrent classes of UBRD. And in step 2 I prove
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that from any other outcome the dynamics reach one of those recurrent classes with strictly

positive probability.

Step1: In the discussion of the environment I assumed that there exists some Pareto

improvement z over z, which is strict for all i ∈ I1. Take then any Pareto optimal outcome

z′, which is a Pareto improvement over z. Then z′ is a Pareto optimal outcome, which is

strict for all i ∈ I ′1. Assume to the contrary that some i ∈ I ′1 were indi�erent between z′ and

z, then his valuation θi must be positive. But then i was either better o� in z than in z′ if

i ∈ I0, or he was worse o� in z than in z if i ∈ I1. Both possibilities lead to a contradiction.

Note further that any Pareto improvement z over z, which is strict for all i ∈ I1 is further

strict for all agents i with θi > 0.

Thus there exists a Pareto optimal outcome z ∈ Z, which is a strict Pareto improvement

over z for all agents i with θi > 0. Let z be such an outcome and de�ne β̄ :=
∑n

i=1 zi.

Then α1i = α2i = zi and β1i = β2i = β̄ is part of a recurrent class of UBRD with outcome

z. Assume to the contrary that after deviations of some agents consistent with UBRD the

outcome changes from z to some z′ 6= z. Note that z′ 6= z implies in this environment that

not all agents are equally well o� in z′ as in z. Then at least one agent is worse o� in z′ than

in z (otherwise this would be a Pareto improvement over z). If one of the agents who is worse

o� contributes in z′ a strictly positive amount then his message that led to the outcome z′

was either exploitable or no better response and he would not have chosen it in UBRD. Thus

all agents, who are worse o� in z′ than in z, need to contribute zero in z′. Assume to the

contrary that in the group of the other agents who are equally well or better o� in z′ than

in z there are some agents who contribute more in z′ than in z. Then it would be a Pareto

improvement over z if those agents made the contributions as in z′, while all other agents

made contributions as in z. This can't be the case since z was Pareto optimal. Thus all

agents contribute weakly less in z′ than in z. This implies that total contributions are lower

in z′ than in z. Then there is one agent in this group whose contribution sank relatively to the

contributions in z by the lowest percentage. If this agent is better o� in z′ than in z he would
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still be better o� in z since the valuation of the public good is linear. This contradicts that z

was a strict Pareto improvement over z for all i with θi > 0. This yields a contradiction and

thus it is not possible that the outcome changes under UBRD once the described message

pro�le is reached.

Step2: Assume now that the current outcome z is not Pareto optimal. Then there exists

a Pareto improvement z′ over z such that z′ is Pareto optimal. De�ne again β̄ :=
∑n

i=1 zi

and β̄′ :=
∑n

i=1 z
′
i. Then for any agent i the message α1i = zi, β1i = β̄, α2i = z′i, β2i = β̄′ is

an unexploitable better response to their current message. If all agents choose this message

the outcome will be z′. Thus the dynamics reach this message pro�le with strictly positive

probability. Once it is reached the new outcome is z′ and now α1i = z′i, β1i = β̄′, α2i = z′i,

β2i = β̄′ is an unexploitable better response for all agents. Thus from any not Pareto optimal

outcome a message pro�le, like the one in the �rst part of this proof, is reached with strictly

positive probability.

If z′ is a strict Pareto improvement over z for all agents i with θi > 0 the proof is complete.

If it is not, then there exists some agent i ∈ I ′1 who is at least as well o� in z as in z′. For

this agent the message α1i = 0, β1i = 0, α2i = 0, β2i = 0 in an unexploitable better response.

Thus the dynamics move from any Pareto optimum like z′ to z with positive probability.

From z any Pareto optimal allocation, which is a strict Pareto improvement over z for all

agents i with θi > 0, is reached with positive probability in the way described above. �

Proof of Theorem 5.5 In the �rst part of the proof I show that any core outcome z,

which is strict for all agents i with fi(
∑n

i=1 zi) > 0, is an outcome of recurrent classes of the

dynamics.

Let z be an outcome of the mechanism and let z be a core allocation, which is strict for

S(z). De�ne β̄ :=
∑n

i=1 zi. Then α1i = α2i = zi and β1i = β2i = β̄ is part of a recurrent

class of UBRD with outcome z. Assume to the contrary that after deviations of some agents

consistent with UBRD the outcome changes to some z′ 6= z. Then at least one agent i ∈ I ′1

is worse o� in z′ than in z (otherwise this would be a coalition improvement over z). Agent
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i's message, which led to the outcome z′, was thus either exploitable or no better response

and he would not have chosen it in UBRD.

In the second part of the proof I show that from all other allocations the dynamics move

with strictly positive probability to a core allocation, which is strict for S(z).

Assume that the dynamics are in a state with some outcome z, which is not Pareto optimal

and let z′ be any Pareto optimal allocation, which is a Pareto improvement over z. De�ne

β̄ :=
∑n

i=1 zi and β̄
′ :=

∑n
i=1 z

′
i. Then the message (zi, β̄), (z′i, β̄

′) is an unexploitable better

response for any agent i. Thus the dynamics move with strictly positive probability from z

to any such z′.

I can thus assume that the dynamics are in a state with some outcome z, which is Pareto

optimal, but not strict for S(z). Then there exists a state z′ such that all agents i ∈ I ′1

are at least as well o� in z′ than in z. De�ne again β̄ :=
∑n

i=1 zi and β̄
′ :=

∑n
i=1 z

′
i. Then

in a �rst step the messages (zi, β̄), (z′i, β̄
′) are unexploitable better responses for every agent

i ∈ I ′1. Once all agents i ∈ I ′1 switched to those messages, the messages (z′i, β̄
′), (z′i, β̄

′) and

(zi, β̄), (zi, β̄) are both unexploitable better responses for those agents. But if now simulta-

neously one agent chooses (z′i, β̄
′), (z′i, β̄

′) and another one (zj, β̄), (zj, β̄), then contribution

breaks down entirely and the outcome will be z. From z any core allocation, which is a Pareto

improvement over z and strict for S(z) will be reached with strictly positive probability in

the way described above. �

Proof of theorem 5.6 I prove this theorem in two steps. In step 1 I show that it is possible

to design arbitrarily cheap incentive schemes, such that no agent is indi�erent between any

two outcomes. In step 2 I show that this leads to the existence of a core outcome in the given

environment. Finally, when every agent has a strict preference between any two outcomes

then any core outcome is strict for all subsets of agents. Thus there exists a core outcome z,

which is strict for S(z).

Step 1: Let ε > 0. De�ne ε′ := mini∈I minz,z′∈Z:ui(z) 6=ui(z′) |ui(z) − ui(z′)| as the smallest

positive di�erence in utility between any two outcomes for any agent. Let NZ := #Z be the
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number of possible outcomes and let r : Z → {1, ..., NZ} be any bijective mapping, which

satis�es
∑n

i=1 zi >
∑n

i=1 z
′
i ⇒ r(z) > r(z′). Then the mapping ∆zi = r(z)min(ε,ε′)

2nNZ
∀ i ∈ I has

total cost of at most ε
2
and leads to a mechanism in which no agent is indi�erent between

any two outcomes.

Step 2: I prove this step by induction over the number of agents in the economy. For the

beginning assume there are n = 1 agents. Then existence of a core outcome is equivalent to

the existence of an outcome which gives the agent maximal utility. Since our state space is

�nite this is trivial. Thus one may assume, that for an economy with n = k agents there

exists a core outcome. Let's now look at an economy with n = k+1 agents. Call the coalition

of agents 1 through k in this economy C. Then by assumption there is an outcome z, with

zk+1 = 0, from which no subcoalition of C can improve. I call this a core outcome in the

coalition C. Let z′ be the Pareto optimal Pareto improvement over z, in which agent k + 1

gets the highest utility. Then no subcoalition of C can improve on z′. Otherwise z could not

have been a core outcome in coalition C. Assume to the contrary a coalition C ′ including

agent k + 1 can improve from z′ to an outcome z′′. Then total contributions are less in z′′

than in z′. Thus z′′′ := (max{z1, z′′1}, ...,max{zk, z′′k}, z′′k+1) is a Pareto improvement over z

in which agent k + 1 is better o� than in z′′ and thus better o� than in z′. This contradicts

the assumptions on z′. Thus no coalition can improve on z′ and therefore z′ is in the core.�
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