What we can learn about fast chemical processes
from slow diffraction experiments

Faraday Discuss. 122 (2002) 41

Collaborators:
S. C. Capelli
K. C. Dubler-Steudle
M. Förtsch
J. Hauser
W. Hummel
T. Lüthi Nyffeler
A. Raselli
K. W. Törnroos

H.B. Bürgi
Universität Bern, Switzerland

Universität Heidelberg, July 2, 2003
Energy profiles, time scales and observation

Process: Vibrations	Reactions
Time scale: fs, individual microscopic events rare
'Slow' mean square rate constants
Observation amplitudes events/sec
Inferring features of energy surfaces from crystal structure data

Single-minimum process (Vibrations)
- Mapping deformation patterns of molecular vibrations (SS, from structural data bases)
- Ground state structures (S)
- Estimating energy differences between different molecular states from occupancy (T)

Multiple-minimum process (Chemical reactions)
- Mapping reaction coordinates (SS, from structural data bases)
- Structure-reactivity correlations (E)
- Resolving structures of different molecular states (S), (e.g. ground and excited state)
- Estimating energy differences between different molecular states from occupancy (T)
- Bond breaking-bond making reactions, conformational interconversions, etc.

Single structures (S) or Series of Structures (SS) (The same molecular fragment in different environments)
- Structures as a function of temperature (T).
- Structures and activation energies (E).
Vibrations of molecular zeolite fragments

Least-squares superposition of Si-atoms from 40 $\text{Si}_{10}\text{O}_{15}$ fragments observed in three structures ($\text{H, CH}_3, \text{C}_6\text{H}_5$) and Rms displacements of $\text{Si}_{10}\text{O}_{15}$-fragment after subtraction of translation and libration motion of Si-atoms.

Conclusion: static displacements from symmetric reference structure give clear indications of low frequency motion.

Inferring features of energy surfaces from crystal structure data

<table>
<thead>
<tr>
<th>Single-minimum process (Vibrations)</th>
<th>Multi-minimum process (Chemical reactions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single structures (S) or Series of Structures (SS) (The same molecular fragment in different environments).</td>
<td>bond breaking-bond making reactions, conformational interconversions, etc.</td>
</tr>
<tr>
<td>Mapping deformation patterns of molecular vibrations (SS, from structural data bases)</td>
<td>multiple molecular states present in the same crystal (disordered structures)</td>
</tr>
<tr>
<td>Structures as a function of temperature (T). Structures and activation energies (E).</td>
<td>Mapping reaction coordinates (SS, from structural data bases)</td>
</tr>
<tr>
<td>Frequencies, force constants and atomic displacement patterns of large-amplitude vibrations (T)</td>
<td>Structure-reactivity correlations (E)</td>
</tr>
<tr>
<td>Ground state structures (S)</td>
<td>Resolution of structures of different molecular states (S), (e.g. ground and excited state)</td>
</tr>
<tr>
<td>Estimates of transition state structures (E)</td>
<td>Estimating energy differences between different molecular states from occupancy (T)</td>
</tr>
</tbody>
</table>
Intramolecular vibrations from mean square displacements

<table>
<thead>
<tr>
<th>Mode</th>
<th>100 K</th>
<th>10 K*</th>
<th>IR/Raman†</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_g (cm$^{-1}$)</td>
<td>49</td>
<td>(49)</td>
<td>57</td>
</tr>
<tr>
<td>E_g (cm$^{-1}$)</td>
<td>75</td>
<td>(75)</td>
<td>84</td>
</tr>
<tr>
<td>T_u (cm$^{-1}$)</td>
<td>62</td>
<td>(62)</td>
<td>68</td>
</tr>
<tr>
<td>$L(T_g)$ (cm$^{-1}$)</td>
<td>47,47,48</td>
<td>45,45,37</td>
<td>—</td>
</tr>
<tr>
<td>$T(T_u)$ (cm$^{-1}$)</td>
<td>32,32,32</td>
<td>19,19,17</td>
<td>—</td>
</tr>
<tr>
<td>f(Si—O—Si) (mdyn Å)</td>
<td>0.077</td>
<td></td>
<td>0.091</td>
</tr>
<tr>
<td>f (SiO–SiO) (mdyn Å)</td>
<td>0.0034</td>
<td></td>
<td>0.0040</td>
</tr>
</tbody>
</table>

After accounting for translational and librational motion

Concerning the structure of benzene

G.A. Jeffrey, J.R. Ruble, R.K. Mullan, J.A. Pople,

15 K
$U_{\text{iso}}(C) \sim 0.008 \, \text{Å}^2$
(shown: * 2.5)

Centrosymmetric superposition of two cyclo-hexatriene molecules?
(1.35 and 1.45 Å)

123 K
$U_{\text{iso}}(C) \sim 0.023 \, \text{Å}^2$
(shown: * 2.5)

Rms displacements U of C$_6$D$_6$ from neutron diffraction
Temperature dependence of mean square amplitudes

\[\langle u^2 \rangle = k_B T / (\omega^2 \mu) + \varepsilon \]

- high T

\[\langle u^2 \rangle = h / (2\omega \mu) \coth (h\omega / 2k_B T) + \varepsilon \]

- general

\[\langle u^2 \rangle = h / (2\omega \mu) + \varepsilon \]

- low T

Harmonic oscillator only

Temperature dependence of rms displacements
(=atomic displacement parameters, ADPs)

Vibrations of a molecule in its crystal field

$$\sum^x(T) = A \ast g \ast V \ast \delta(1/\omega, T) \ast V' \ast g' \ast A' + \varepsilon^x$$

ADPs (blue) determine parameters of model (red)

ADPs, determined experimentally at several temperatures

Low frequency, soft vibrations (ω), e.g. librations, translations and deformations (V)

Intramolecular, hard vibrations (~temperature independent), and disorder (ε)

Results for Benzene, C₆D₆

15 K
U_{iso}(C) \sim 0.008 \text{ Å}^2
(shown: *2.5)

\varepsilon_C \sim 0.0007 \text{ Å}^2
zero-point motion or disorder?
(shown: *2.5)

(ADP_{obs} – ADP_{calc})^{1/2}
av \langle \text{diff} \rangle \sim 0.0002 \text{ Å}^2
(shown: *2.5*5)

Zero point motion from neutron diffraction and a benchmark force field (*10^4 \text{ Å}^2)

<table>
<thead>
<tr>
<th></th>
<th>C_{(bond)}</th>
<th>C_{(ip)}</th>
<th>C_{(oop)}</th>
<th>D_{(bond)}</th>
<th>D_{(ip)}</th>
<th>D_{(oop)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffraction</td>
<td>14(1)</td>
<td>7(1)</td>
<td>15(1)</td>
<td>52(1)</td>
<td>83(1)</td>
<td>110(2)</td>
</tr>
<tr>
<td>Force Field</td>
<td>13</td>
<td>8</td>
<td>16</td>
<td>44</td>
<td>89</td>
<td>133</td>
</tr>
</tbody>
</table>
Isotope effect on ADPs

\[\Sigma_D^x = A * g_D * V_D * \delta(1/\omega_D, T) * V_D' * g_D' * A' + \varepsilon_D^x \]

\[\lambda_D(\omega_D^2) = \begin{array}{c} g_D * V_D * F * V_D' * g_D' \\ \end{array} \]

\[\lambda_H(\omega_H^2) = \begin{array}{c} g_H * V_H * F * V_H' * g_H' \\ \end{array} \]

\[\Sigma_H^x = A * g_H * V_H * \delta(1/\omega_H, T) * V_H' * g_H' * A' + \varepsilon_H^x \]

Neutron diffraction
\(\text{C}_6\text{D}_6 \), 15 and 123 K

Theory of
normal
vibrations

X-ray diffraction
\(\text{C}_6\text{H}_6 \), 110 K

<table>
<thead>
<tr>
<th></th>
<th>(U_{11})</th>
<th>(U_{22})</th>
<th>(U_{33})</th>
<th>(U_{12})</th>
<th>(U_{13})</th>
<th>(U_{23})</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, X-ray</td>
<td>predict 212</td>
<td>181</td>
<td>236</td>
<td>12</td>
<td>-12</td>
<td>-10</td>
</tr>
<tr>
<td>C2, X-ray</td>
<td>predict 197</td>
<td>237</td>
<td>221</td>
<td>13</td>
<td>29</td>
<td>-18</td>
</tr>
<tr>
<td>C3, X-ray</td>
<td>predict 211</td>
<td>214</td>
<td>-21</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Crankshaft motion in dimethylstilbene

S.C. Capelli, M. Förtsch, H.B. Bürgi

Frequency 54(2) cm\(^{-1}\)

Libration and out-of-plane vibration of urea

T. Lüthi Nyffeler, H.B. Bürgi,
unpublished

Frequency 45(5) cm\(^{-1}\)
Inferring features of energy surfaces from crystal structure data

Single-minimum process
(Vibrations)

<table>
<thead>
<tr>
<th>Single structures (S) or Series of Structures (SS)</th>
<th>Structures as a function of temperature (T). Structures and activation energies (E).</th>
</tr>
</thead>
<tbody>
<tr>
<td>(The same molecular fragment in different environments).</td>
<td>Frequencies, force constants and atomic displacement patterns of large-amplitude vibrations (T).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mapping deformation patterns of molecular vibrations (SS, from structural data bases)</th>
<th>Ground state structures (S)</th>
<th>Estimates of transition state structures (E)</th>
</tr>
</thead>
</table>

Multiple-minimum process
(Chemical reactions)

<table>
<thead>
<tr>
<th>bond breaking-bond making reactions, conformational interconversions, etc.</th>
<th>Mapping reaction coordinates (SS, from structural data bases)</th>
<th>Structure-reactivity correlations (E)</th>
</tr>
</thead>
</table>

| multiple molecular states present in the same crystal (disordered structures) | Resolution of structures of different molecular states (S), (e.g. ground and excited state) | Estimating energy differences between different molecular states from occupancy (T) |
Nucleophile-electrophile contacts to carbonyl groups from the CSD

H. B. Bürgi
Faraday Discuss., 122 (2002) 41

Acetal hydrolysis: structure correlation

Principal component analysis shows correlated changes of structural parameters

Inferring features of energy surfaces from crystal structure data

<table>
<thead>
<tr>
<th>Single-minimum process (Vibrations)</th>
<th>Single structures (S) or Series of Structures (SS) (The same molecular fragment in different environments).</th>
<th>Structures as a function of temperature (T).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mapping deformation patterns of molecular vibrations (SS, from structural data bases)</td>
<td>Structures and activation energies (E).</td>
</tr>
<tr>
<td>Multiple-minimum process (Chemical reactions)</td>
<td>Ground state structures (S)</td>
<td>Estimates of transition state structures (E)</td>
</tr>
<tr>
<td></td>
<td>Mapping reaction coordinates (SS, from structural data bases)</td>
<td>Structure-reactivity correlations (E)</td>
</tr>
<tr>
<td></td>
<td>Bond breaking-bond making reactions, conformational interconversions, etc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiple molecular states present in the same crystal (disordered structures)</td>
<td>Estimating energy differences between different molecular states from occupancy (T)</td>
</tr>
<tr>
<td></td>
<td>Resolution of structures of different molecular states (S), (e.g. ground and excited state)</td>
<td></td>
</tr>
</tbody>
</table>
Acetal hydrolysis: structure-energy correlation

\[E = k_2 \cdot q^2 / 2 - k_3 \cdot q^3 - k_1 \cdot q \]

\[\Delta E^\ddagger / \Delta q = -(6 \cdot E_0^\ddagger \cdot k_2)^{1/2} \]

Calc: 320 kcal (mol Å)^{-1}

Exp: 300 kcal (mol Å)^{-1}

Acetal hydrolysis: transition state structure

\[E = k_2 \cdot \frac{q^2}{2} - k_3 \cdot q^3 - k_1 \cdot q \]

\[q^\ddagger = \left(\frac{6 \cdot E_0^\ddagger}{k_2} \right)^{1/2} \]

\[E = k_2 \cdot \frac{q^2}{2} - k_3 \cdot q^3 \]

\[\Delta(C1-O1) \quad \Delta(C1-O5) \]

\[q^\ddagger = \left(\frac{6 \cdot E_0^\ddagger}{k_2} \right)^{1/2} \]

0.55 Å -0.15 Å

Ab initio:

OC(OH)$_2$.H$_2$O 0.17 -0.07
CH$_2$C(OH)$_2$.H$_2$O 0.34 -0.11
H$_2$C(OH)$_2$.H$_2$O 0.38 -0.16
Acetal hydrolysis: model of enzymatic catalysis

Structural data from 1:

<table>
<thead>
<tr>
<th></th>
<th>No COOH</th>
<th>with COOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-OCH$_3$</td>
<td>1.398</td>
<td>1.383 Å</td>
</tr>
<tr>
<td>C-OR$_3$</td>
<td>1.408</td>
<td>1.424 Å</td>
</tr>
</tbody>
</table>

Relative rates of hydrolysis from 2

1 10^{10}

Bowl depth and inversion barrier in corannulenes

\[E = x^4 - a \cdot x^2 \]

\[x_{eq} = \pm \left(\frac{a}{2} \right)^{1/2} \]

\[\Delta E = -x_{eq}^4 \]

Inferring features of energy surfaces from crystal structure data

<table>
<thead>
<tr>
<th>Single-minimum process (Vibrations)</th>
<th>Single structures (S) or Series of Structures (SS) (The same molecular fragment in different environments).</th>
<th>Structures as a function of temperature (T). Structures and activation energies (E).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-minimum process (Vibrations)</td>
<td>Mapping deformation patterns of molecular vibrations (SS, from structural data bases)</td>
<td>Frequencies, force constants and atomic displacement patterns of large-amplitude vibrations (T)</td>
</tr>
<tr>
<td>Multiple-minimum process (Chemical reactions)</td>
<td>Ground state structures (S)</td>
<td>Estimates of transition state structures (E)</td>
</tr>
<tr>
<td>bond breaking-bond making reactions, conformational interconversions, etc.</td>
<td>Mapping reaction coordinates (SS, from structural data bases)</td>
<td>Structure-reactivity correlations (E)</td>
</tr>
<tr>
<td>multiple molecular states present in the same crystal (disordered structures)</td>
<td>Resolution of structures of different molecular states (S), (e.g. ground and excited state)</td>
<td>Estimating energy differences between different molecular states from occupancy (T)</td>
</tr>
</tbody>
</table>
Trapping unstable species at low temperatures

Light induced excited high spin-state trapping in [FeL₂](BF₄)₂ (L = 2,6-di(pyrazol-1-yl)pyridine)

Victoria A. Money, a Ivana Radosavljevic Evans, a Malcolm A. Halcrow, b Andrés E. Goeta a and Judith A. K. Howard a

<table>
<thead>
<tr>
<th>Spin state</th>
<th>T/K</th>
<th>V/Å³</th>
<th>β°</th>
<th>Mean Fe–N/Å</th>
<th>Bite angle</th>
<th>BF₄⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS-1</td>
<td>290</td>
<td>1373.3(5)</td>
<td>95.67(3)</td>
<td>2.166(6)</td>
<td>73.4(2)</td>
<td>Disordered</td>
</tr>
<tr>
<td>LS</td>
<td>120</td>
<td>1308.6(5)</td>
<td>98.37(3)</td>
<td>1.953(2)</td>
<td>80.09(8)</td>
<td>Ordered</td>
</tr>
<tr>
<td>LS</td>
<td>30</td>
<td>1288.8(1)</td>
<td>98.575(1)</td>
<td>1.950(2)</td>
<td>80.08(8)</td>
<td>Ordered</td>
</tr>
<tr>
<td>HS-2</td>
<td>30</td>
<td>1318.1(5)</td>
<td>97.15(1)</td>
<td>2.165(2)</td>
<td>73.52(7)</td>
<td>Ordered</td>
</tr>
</tbody>
</table>

CHEM. COMMUN., 2003, 158–159
Excited-state structure by time-resolved X-ray diffraction

\[\text{Pt}_2 (\text{H}_2\text{P}_2\text{O}_5)_4 \]

\[\Delta d(\text{Pt-Pt}) = -0.28(9) \text{ Å} \]
Inferring features of energy surfaces from crystal structure data

Single-minimum process (Vibrations)

- Single structures (S) or Series of Structures (SS) (The same molecular fragment in different environments).
- Mapping deformation patterns of molecular vibrations (SS, from structural data bases).

Multiple-minimum process (Chemical reactions)

- Structures as a function of temperature (T).
- Structures and activation energies (E).
- Ground state structures (S)
- Estimates of transition state structures (E)
- Mapping reaction coordinates (SS, from structural data bases)
- Structure-reactivity correlations (E)
- Multiple molecular states present in the same crystal (disordered structures)
- Resolution of structures of different molecular states (S), (e.g. ground and excited state)
- Estimating energy differences between different molecular states from occupancy (T)

bond breaking-bond making reactions, conformational interconversions, etc.